American Journal of Potato Research

, Volume 80, Issue 6, pp 359–369 | Cite as

Marker-assisted genetic analysis of non-acclimated freezing tolerance and cold acclimation capacity in a backcrossSolarium population

  • Sandra E. Vega
  • Alfonso H. del Rio
  • Geunhwa Jung
  • John B. Bamberg
  • Jiwan P. Palta
Article

Abstract

Random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were used to construct a partial genetic linkage map in a potato backcross population. The population, derived from two diploid wildSolatium species (frost tolerant, able to cold acclimateS. commersonii; frost sensitive, unable to cold acclimateS. cardiophyllum), was used to map quantitative trait loci (QTL) of non-acclimated relative freezing tolerance (NARFT) and cold acclimation capacity (CAC). Precise assessment of these traits allowed distinction of small but significant differences among 35 backcross genotypes. NARFT and CAC were not correlated in the segregating population, suggesting independent genetic control for these two major components of freezing tolerance. The linkage map spanned 479.4 cM and included 77 RAPD markers and two SSR markers, with 38 RAPD and 10 SSR unassigned markers. Two QTLs for NARFT were detected in two different linkage groups, accounting for 44.0% of the phenotypic variation for this trait. Two QTLs for CAC were detected, accounting for 24.9% of the phenotypic variation for this trait. QTLs for NARFT and CAC were detected at separate genomic regions, in support of the independent genetic control of these two traits. QTLs for NARFT and CAC were detected in a linkage group identified as part of chromosome V, suggesting that such chromosome constitutes a prime candidate for fine-mapping. Due to the relatively small progeny size evaluated in this study, additional QTLs for NARFT and CAC could have been involved but not identified. Therefore, the conclusions derived from this study should be considered preliminary.

Additional Key Words

cold hardiness QTL RAPD potato Solanum commersonii Solanum cardiophyllum SSR 

Abbreviations

ACCRFT

acclimated relative freezing tolerance

BC

backcross

bp

base pair

CAC

cold acclimation capacity

GA

gibberellic acid

LG

linkage group

LOD

logarithm of the odds

NARFT

nonacclimated relative freezing tolerance

PAR

photosynthetically active radiation

r

recombinant fraction

RFT

relative freezing tolerance

Resumen

Marcadores de DNA polimórfico amplificado al azar (RAPD) y de secuencias simples repetidas (SSR) fueron utilizadas para construir un mapa parcial de ligamiento genético en una población de retro-cruza de papa. Esta población fue derivada de dos especies silvestres diploides,S. commersonii (resistente a heladas, capaz de acclimatarse a bajas temperaturas) yS. cardiophyllum (sensible a heladas, incapaz de aclimatarse a bajas temperaturas), y se utilizó para mapear loci de carácteres cuantitativos (QTL) para la tolerancia relativa a heladas sin aclimatación a bajas temperaturas (NARFT) y la capacidad de aclimatarse a bajas temperaturas (CAC). La determinacién precisa de estos dos caracteres permitió encontrar diferencias pequeñas pero significativas entre los 35 genotipos de la retro-cruza. La correlación entre NARFT y CAC no fue significativa en la población segregante, sugieriendo que existe un control genético independiente para cada uno de estos dos componentes mayores de la tolerancia a heladas. El tamaño del mapa fue de 479.4cM e incluyó 77 marcadores RAPD y dos marcadores SSR; con 38 marcadores RAPD y 10 marcadores SSR sin asignar. Para NARFT, dos QTLs fueron detectados en dos diferentes grupos de ligamiento representando 44.0% de la variación fenotípica observada en este carácter. Para CAC, dos QTLs fueron detectados, los cuales representaron 24.9% de la variación fenotípica observada en este carácter. Los QTLs para NARFT y CAC fueron detectados en diferentes regiones genomicas, confirmando el control genético independiente de estos dos caracteres. Los QTLs para NARFT y CAC fueron detectados en un grupo de ligamiento identificado como parte del cromosoma V, sugiriendo que dicho cromosoma podria ser un candidato principal para mapeo fino. Debido a que el tamano de la población evaluada en este estudio fue relativamente pequeño, QTLs adicionales para NARFT y CAC podrían existir. En consecuencia, las conclusiones derivadas de este estudio deben ser consideradas como preliminares.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Arora R, LJ Rowland, G Panta, CC Lim, JS Lehman, and N Vorsa. 1998. Genetic control of hardiness in blueberry.In: PH Li and HH Chen (eds), Plant Cold Hardiness: Molecular Biology, Biochem-istry and Physiology. Plenum Press, New York, pp 99–106.Google Scholar
  2. Bonierbale MW, RL Plaisted, and SD Tanksley. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evo-lution in potato and tomato. Genetics 120:1095–1103.PubMedGoogle Scholar
  3. Byrne M, JC Murrel, JV Owen, ER Williams, and GF Moran. 1997. Map-ping of quantitative trait loci influencing frost tolerance inEuca-lyptus nitens. Theor Appl Genet 95:975–979.CrossRefGoogle Scholar
  4. Cai Q, CL Guy, and GA Moore. 1994. Extension of linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor Appl Genet. 89:606–614.CrossRefGoogle Scholar
  5. Chen HH, andPH Li. 1980. Characteristics of cold acclimation and de-acclimation of tuber-bearingSolanum species. Plant Physiol 65:1146–1148.PubMedGoogle Scholar
  6. Chen Y-KH, JB Bamberg, and JP Palta. 1999. Expression of freezing tol-erance in the interspecific Fl and somatic hybrids of potatoes. Theor Appl Genet 98:995–1004.CrossRefGoogle Scholar
  7. del Rio AH, JB Bamberg, and Z Huaman. 1997. Assessing changes in the genetic diversity of potato genebanks. 1. Effects of seed increase. Theor Appl Genet 95:191–198.CrossRefGoogle Scholar
  8. Dudley JW. 1993. Molecular markers in plant improvement: manipula-tion of genes affecting quantitative traits. Crop Sci 33:660–668.CrossRefGoogle Scholar
  9. Edwards MD, CW Stuber, and JF Wendel. 1987. Molecular-marker-facil-itated investigations of quantitative-trait loci in maize. I. Num-bers, genomic distribution and types of gene action. Genetics 116:113–125.PubMedGoogle Scholar
  10. Edwards MD, T Helentjaris, S Wright, and CW Stuber. 1992. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. Theor Appl Genet 83:765–774.CrossRefGoogle Scholar
  11. Estrada RN, W Garcia, JG Carrasco, and E Carrasco. 1993. Breeding potatoes for tolerance to frost and resistance to late blight. Am Potato J70:809–810.Google Scholar
  12. Flint HL, BR Boyse, and DJ Beattie. 1967. Index of injury —a useful expression of freezing injury to plant tissues as determined by the electrolytic method. Can J Plant Sci 47:229–230.CrossRefGoogle Scholar
  13. Foolad MR, FQ Chen, and GY Lin. 1998. RFLP mapping of QTLs con-ferring cold tolerance during seed germination in an interspe-cific cross of tomato. Mol Breed 4:519–529.CrossRefGoogle Scholar
  14. Gebhardt C, E Ritter, T Debener, U Schachtschabel, B Walkemeier, H Uhrig, and F Salamini. 1989. RFLP analysis and linkage mapping inSolanum tuberosum. Theor Appl Genet 78:65–75.CrossRefGoogle Scholar
  15. Hosaka K. 1999. A genetic map of Solanum phureja Clone 1.22 con-structed using RFLP and RAPD markers. Am J Potato Res 75:97–102.CrossRefGoogle Scholar
  16. Jansky SH, GL Yerk, and SJ Peloquin. 1990. The use of potato haploids to put 2x wild species germplasm into usable form. Plant Breed 104:290–294.CrossRefGoogle Scholar
  17. Keats BJB, SL Sherman, NE Morton, EB Robson, KH Beutow, HM Cann, PE Cartwright, A Chakravarti, U Francke, PP Green, and J Ott. 1991. Guidelines for human linkage maps: An international sys-tem for human linkage maps (ISLM 1990). Genomics 9:557–560.PubMedCrossRefGoogle Scholar
  18. Kole C, CE Thorman, BH Karlsson, JP Palta, P Gaffney, B Yandell, and TC Osborn. 2002. Comparative mapping of loci controlling win-ter survival and related traits in oilseedBrassica rapa andBras-sica napus. Mol Breed 9:201–210.CrossRefGoogle Scholar
  19. Kosambi DD. 1944. The estimation of map distances from recombina-tion values. Ann Eugen 12:172–175.Google Scholar
  20. Lande R, and R Thompson. 1990. Efficiency of marker-assisted selec-tion in the improvement of quantitative traits. Genetics 124:743–756.PubMedGoogle Scholar
  21. Lander ES, and D Botstein. 1989. Mapping Mendelian factors underly-ing quantitative traits using RFLP linkage maps. Genetics 121:185–199.PubMedGoogle Scholar
  22. Lander ES, P Green, J Abrahamson, A Barlow, MJ Daly, SE Lincoln, and L Newburg. 1987. Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.PubMedCrossRefGoogle Scholar
  23. Li PH, and JP Palta. 1978. Frost hardening and freezing stress in tuber bearingSolanum species.In: PH Li and A Sakai (eds), Recent Advances in Plant Cold Hardiness and Freezing Stress: Mecha-nism and Crop Implications. Academic Press, New York. pp 49–71.Google Scholar
  24. Limin AE, and DB Fowler. 1991. Breeding for cold hardiness in winter wheat: problems, progress and alien gene expression. Field Crops Res 27:201–218.CrossRefGoogle Scholar
  25. Lincoln SE, and E Lander. 1989. Mapping genes controlling quantitative traits with MAPMAKER/QTL. Whitehead Institute for Bioméd-ical Research Technical Report, Cambridge.Google Scholar
  26. Marshall HG. 1982. Breeding for tolerance to heat and cold.In: MN Christiansen and CJ Lewis (eds), Breeding Plants for Less Favorable Environments. J Wiley and Sons, New York, pp 47–49.Google Scholar
  27. Milbourne D, RC Meyer, AJ Collins, LD Ramsay, C Gebhardt, and R Waugh. 1998. Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol Gen Genet 259:233–245.PubMedCrossRefGoogle Scholar
  28. Nguyen HT, RC Babu, and A Blum. 1997. Breeding for drought resist-ance in rice; physiology and molecular genetics considerations. Crop Sci 37:1426–1434.CrossRefGoogle Scholar
  29. Palta JP, and G Simon. 1993. Breeding potential for improvement of freezing stress resistance: genetic separation of freezing toler-ance, freezing avoidance, and capacity to cold acclimate.In: PH Li and L Christersson (eds), Advances in Plant Cold Hardiness. CRC Press, Boca Raton, pp 299–310.Google Scholar
  30. Palta JP, JB Bamberg, Y-K Chen, SE Vega, LS Weiss, and BH Karlsson. 1997. Understanding the genetic control of freezing stress resist-ance using potato species as a model system.In: PH Li and THH Chen (eds), Plant Cold Hardiness. Molecular Biology, Biochem-istry and Physiology. Plenum Press, New York, pp 67–75.Google Scholar
  31. Paterson AH, S Damon, JD Hewitt, D Zamir, HD Rabinowitch, SE Lin-coln, ES Lander, and SD Tanksley. 1991. Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments. Genetics 127:181–197.PubMedGoogle Scholar
  32. Peloquin SJ, GL Yerk, JE Werner, and E Darmo. 1989. Potato breeding with haploids and 2n gametes. Genome 31:1000–1004.Google Scholar
  33. Ross RW, and PR Rowe. 1969. Utilizing the frost resistance of diploidSolanum species. Am Potato J 46:5–14.Google Scholar
  34. Rowland LJ, EL Ogden, R Arora, C-C Lim, JS Lehman, A Levi, and GR Panta. 1999. Use of blueberry to study genetic control of chilling requirement and cold hardiness in woody perennials. HortScience 34: 1185–1191.Google Scholar
  35. Saito K, K Miura, K Nagano, Y Hayano-Saito, H Araki, and A Kato. 2001. Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet 103:862–868.CrossRefGoogle Scholar
  36. Shahin E, and R Simpson. 1986. Gene transfer system for potato. HortScience 21:1199–1201.Google Scholar
  37. Shapiro SS, and MB Wilk. 1965. An analysis of variance for normality (complete samples). Biometrika 52:591–611.Google Scholar
  38. Steffen KL, R Arora, and J. Palta. 1989. Relative sensitivity of photo-synthesis and respiration to a freeze-thaw stress: role of realis-tic freeze-thaw protocol. Plant Physiol 89:1372–1379.PubMedGoogle Scholar
  39. Stone JM, JP Palta, JB Bamberg, LS Weiss, and JF Harbage. 1993. Inher-itance of freezing resistance in tuber-bearingSolanum species: Evidence for independent genetic control of non-acclimated freezing tolerance and cold acclimation capacity. Proc Natl Acad Sci 90:7869–7873.PubMedCrossRefGoogle Scholar
  40. Stushnoff C, DB Fowler, and A Brule-Babel. 1984. Breeding and selec-tion for resistance to low temperature.In: PB Vose and SG Blixt (eds), Crop Breeding: A Contemporary Basis. Pergamon Press, New York, pp 115–136.Google Scholar
  41. Sutka J. 1994. Genetic control of frost tolerance in wheat. Euphytica 77:277–282.CrossRefGoogle Scholar
  42. Teutonico RA, B Yandell, JM Satagopan, ME Ferreira, JP Palta, and TC Osborn. 1995. Genetic analysis and mapping of genes control-ling freezing tolerance in oilseedBrassica. Mol Breed 1:329–339.CrossRefGoogle Scholar
  43. Vega SE, and JB Bamberg. 1995. Screening the US potato collection for frost hardiness. Am Potato J 72:13–21.Google Scholar
  44. Vega SE, JP Palta, and JB Bamberg. 2000. Variability in the rate of cold acclimation and deacclimation among tuber-bearingSolanum (potato) species. J Am Soc Hort Sci 125:205–211.Google Scholar

Copyright information

© 2003 2003

Authors and Affiliations

  • Sandra E. Vega
    • 1
  • Alfonso H. del Rio
    • 1
  • Geunhwa Jung
    • 2
  • John B. Bamberg
    • 3
  • Jiwan P. Palta
    • 1
  1. 1.Department of HorticultureUniversity of WisconsinMadison
  2. 2.Department of Plant PathologyUniversity of WisconsinMadison
  3. 3.USDA/Agricultural Research ServiceInter-Regional Potato Introduction StationSturgeon Bay

Personalised recommendations