Skip to main content

Advertisement

Log in

Selecting aSolanum tuberosum subsp.andigena core collection using morphological, geographical, disease and pest descriptors

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2000

Abstract

One of the largest and most diverse clonally propagated potato collections of cultivated potato species is maintained at the International Potato Center (CIP). Almost 75% of this collection isS. tuberosum subsp.andigena (hereafterandigena) cultivars. The first step to select a core collection of this subspecies was to identify duplicate accessions of the same cultivar using comparisons of morphological characters and electrophoretic banding patterns of total proteins and esterases. This reduced the number of accessions in the collection from 10,722 to 2,379. The number of accessions of the same cultivar in the original collection ranged from 1 to 276. This is a report on the selection of a core from the 2,379 morphologically different cultivars using morphological, geographical, and evaluation data. A total of 25 morphological descriptors were scored from all 2,379andigena cultivars. A phenogram was constructed from these data using a simple matching coefficient and the unweighted pair group method using arithmetic averages. We decided to include in the core a proportional sample consisting of approximately the square root of the number of accessions from each first geographical division (state, department, or province) of countries whereandigena was collected. Accessions were chosen first to represent the widest morphological diversity and to maximize geographical representation of the clusters distributed on the main branches of the morphological phenogram. Second, the representative accession of each cluster was also chosen considering data on resistance to diseases and pests, dry matter content, and number of duplicate accessions identified in the original collection. The resulting core has 306 accessions (12.86%) from eight countries from Mexico to Argentina. The full breeding potential of Andean farmerselected potato cultivars that have been maintained for centuries in their center of diversity remains unknown. A thorough evaluation of their reaction to diseases and pests and other desirable traits is now feasible because the selectedandigena core set covers the broadest genetic base that is available in ex situ conservation.

Resumen

Una de las más grandes y diversas colecciones de especies cultivadas de papa se conserva clonalmente en el Centro Internacional de la Papa (CIP). Casi el 75% de esta colección son cultivares deS. tuberosum subsp.andigena (en adelanteandigena). El primer paso para seleccionar una colección representativa de esta subspecie fue identificar las accesiones duplicadas del mismo cultivar utilizando comparaciones de caracteristicas morfológicas y de sus patrones de bandas electroforéticas de proteínas y esterasas totales. Esto redujo el número de entradas en la colección de 10,722 a 2,379. El número de entradas del mismo cultivar fluctuó entre 1 y 276. Este es un reporte sobre la selección de una colección representativa de los 2,379 cultivares morfológicamente diferentes, usando datos morfológicos, geográficos y de evaluatión. De los 2,379 cultivaresandigena, se registraron datos de un total de 25 descriptores morfológicos. Con estos datos se construyó un dendograma utilizando el coeficiente de correspondencia simple y el método de comparación de promedios aritméticos simple. Nosotros decidimos incluir en la colección representativa, una muestra proporcional que fuera aproximadamente igual a la raíz cuadrada del número de entradas de la primera división geográfica (estado, departamento o provincia) de los países donde se hicieron colectas deandigena. Las entradas seleccionadas deberían representar la más amplia diversidad morfologica y maximizar la representatión geográfica de acuerdo a la distribución de los conglomerados principales del dendograma morfológico. Segundo, las entradas representativas de cada conglomerado también se escogieron considerando los datos sobre la resistencia a las enfermedades y plagas, el contenido de materia seca y el número de entradas duplicadas identificadas en la colección original. La colección representativa resultante tiene 306 cultivares (12,86%) de ocho países desde Mexico a Argentina. El potential de mejoramiento de los cultivares de papa seleccionados por agricultores que se han conservado durante siglos en su centro de diversidad, permanece aún casi desconocido. Una evaluación minuciosa de sus reacciones a las enfermedades, plagas y otras características deseables para el mejoramiento del cultivo de la papa es ahora factible, porque la colección representativa deandigena que se ha seleccionado abarca la base genética más amplia que está conservada ex situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Literature Cited

  • Brown, A.H.D. 1989a. The case for core collections.In: A.H.D. Brown, O.H. Frankel, D.R. Marshall, and J.T. Williams (eds.). The Use of Plant Genetic Resources. Cambridge: Cambridge University Press.

    Google Scholar 

  • Brown, A.H.D. 1989b. Core collections: a practical approach to genetic resources management. Genome 31:818–824.

    Google Scholar 

  • Brown, A.H.D. 1995. The core collection at the crossroads.In: T. Hodgkin, AH.D. Brown, T.J.L. van Hintum, E.A.V. Morales (eds.). Core Collections of Plant Genetic Resources. Chichester: John Wiley & Sons. pp. 3–19.

    Google Scholar 

  • Frankel, O.H., and A.H.D. Brown. 1984. Current plant genetic resources -a critical appraisal.In: Genetics: New Frontiers (vol. IV). New Delhi, India: IBH Publishing.

    Google Scholar 

  • Hawkes, J.G. 1990. The Potato—Evolution, Biodiversity and Genetic Resources. London: Belhaven Press. 259p.

    Google Scholar 

  • Huamán, Z. 1986. Conservation of potato genetic resources at CIP. CIP Circular 14(2): 1–7.

    Google Scholar 

  • Huamán, Z. 1987. Inventory of Andean potato cultivais with resistance to some pests and diseases and other desirable traits. Lima, Peru: International Potato Center. 22p.

    Google Scholar 

  • Huamán, Z. 1994. Ex situ conservation of potato genetic resources at CIP. CIP Circular 20(3): 1–7.

    Google Scholar 

  • Huamán, Z., A. Golmirzaie, and W. Amoros. 1997. The potato.In: D. Fuccillo, L. Sears, and P. Stapleton(eds.). Biodiversity in Trust: Conservation and Use of Plant Genetic Resources in CGIAR Centres. Cambridge: Cambridge University Press. pp. 21–28.

    Google Scholar 

  • Huamán Z., R. Ortiz, D. Zhang, and F. Rodriguez. 2000. Isozyme analysis of entire and core collections ofSolanum tuberosum subsp.andigena potato cultivars. Crop Sci 40:273–276.

    Article  Google Scholar 

  • Huamán, Z. and H. Stegemann. 1989. Use of electrophoretic analyses to verify morphologically identical clones in a potato collection. Plant Varieties & Seeds 2:155–161.

    Google Scholar 

  • Huamán, Z., J.T. Williams, W. Salhuana, and L. Vincent. 1977. Descriptors for the cultivated potato and for the maintenance and distribution of germplasm collections. Rome: International Board for Plant Genetic Resources. 47p.

    Google Scholar 

  • Mandolino, G., M.S. De, V. Faeti, M. Bagatta, A Carboni, and P. Ranalli. 1996. Stability of fingerprints ofSolanum tuberosum plants derived from conventional tubers and in vitro tubers. Plant Breed 115:439–444.

    Article  CAS  Google Scholar 

  • Ortiz, R., E.N. Ruiz-Tapia, and A. Mujica-Sanchez. 1998. Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor Appl Genet 96:475–483.

    Article  Google Scholar 

  • Rohlf, F.J. 1992. NTSYS-pc, Numerical Taxonomy and Multivariate Analysis System. New York: Exeter Publishing Ltd.

    Google Scholar 

  • SAS Institute. 1985. SAS User’s Guide. Statistics, version 5. Cary, NC: SAS Inst.

    Google Scholar 

  • Schneider, K. and D.S. Douches. 1997. Assessment of PCR-based simple sequence repeats to fingerprint North American potato cultivars. Am Potato J 74:149–160.

    Article  CAS  Google Scholar 

  • Skroch, P.W., J. Nienhuis, S. Bebee, J. Tohme, and F. Pedraza. 1998. Comparison of Mexican common bean (Phaseolus vulgaris L.) core and reserve germplasm collections. Crop Sci 38:488–496.

    Article  Google Scholar 

  • Zhang, D.P., M. Ghislain, Z. Huamán, F. Rodríguez, and J.C. Cervantes. 1997 Identifying duplicates in sweetpotato germplasm using RAPD. In: CIP Program Report 1995–1996. Lima, Peru: International Potato Center, pp. 90–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zósimo Huamán.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02855797.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huamán, Z., Ortiz, R. & Gómez, R. Selecting aSolanum tuberosum subsp.andigena core collection using morphological, geographical, disease and pest descriptors. Am. J. Pot Res 77, 183–190 (2000). https://doi.org/10.1007/BF02853943

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02853943

Additional Key Words