Skip to main content

Potato after-cooking darkening

Abstract

After-cooking darkening (ACD) is one of the most widespread, undesirable characteristics of cultivated potato. With the current expansion of the potato-processing industry around the world, there is a renewed interest in the development of new ways to prevent ACD. After-cooking darkening is caused by the oxidation of the ferri-chlorogenic acid in the boiled or fried potatoes. The severity of the darkening is dependent on the ratio of chlorogenic acid to citric acid concentrations in the potato tubers. Higher ratio normally results in darker tubers. The concentration of the chlorogenic and citric acids is genetically controlled and influenced by environmental conditions. This paper outlines the history of ACD and current status of knowledge of the chemistry of the dark pigment formation and its genetic and environmental determinants. Also discussed are the methods of chemical prevention of ACD presently used by the potato-processing industry and potential strategies for reducing tuber after cooking darkening using molecular approaches.

Resumen

El oscurecimiento después de la cocción (ACD siglas en Inglés) es una de las características indeseables mas difundidas en el cultivo de la papa. Con la expansión creciente de la industria de procesamiento de papa en la actualidad, existe un interés renovado en desarrollar formas nuevas para prevenir el ACD. El oscurecimiento después de la cocción es causado por oxidación del ácido ferri-clorogénico en las papas hervidas o fritas. La severidad del oscurecimiento depende de la proporción de ácido clorogénico y la concentración de ácido cítrico en los tubérculos de papa. Una mayor proporción da normalmente como resultado tubérculos más oscuros. La concentración de los ácidos clorogénico y cítrico es controlada genéticamente e influenciada por las condiciones del medio ambiente. Este artículo destaca la historia del ACD y el estado actual del conocimiento de la química involucrada en la formación del pigmento oscuro y sus determinantes genético y medio ambiental. También discute los métodos de prevención química del ACD, actualmente usados por la industria de procesamiento de papa y las estrategias potenciales para reducir el oscurecimiento después de la cocción, utilizando un enfoque molecular.

This is a preview of subscription content, access via your institution.

Abbreviations

AA:

ascorbic acid

ACD:

after-cooking darkening

CA:

citric acid

cDNA-AFLP:

cDNA amplified fragment length polymorphism

CGH:

p-coumaroyl-D-glucose hydroxylase

CgA:

chlorogenic acid

C4H:

cinnamic acid 4-hydroxylase

EST:

expressed sequence tag

GC:

gas chromatography

HPLC:

high performance liquid chromatography

QHT:

hydroxycinnamyl

CoA:

Quinate hydroxycinnamyl transferase

QTL:

quantitative trait loci

RFLP:

restriction fragment length polymorphism

RH:

relative humidity

SAPP:

sodium acid pyrophosphate

SNP:

single nucleotide polymorphism

Literature Cited

  • Bachern CWB, RS van der Hoeven, SM de Brujin, D Vreugdenhil, M Zabeau, and RGF Visser. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J 9:745–753.

    Article  Google Scholar 

  • Blount JW, KL Korth, SA Masound, S Rasmussen, C Lamb, and RA Dixon. 2000. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidences for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122:107–116.

    PubMed  Article  CAS  Google Scholar 

  • Bring SV. 1966. Total ascorbic acid of shoestring potatoes. J Am Diet Assoc 48:112–115.

    PubMed  CAS  Google Scholar 

  • Bring SV, and FP Raab. 1964. Total Ascorbic acid in potatoes. Raw, fresh, mashed and reconstituted granules. J Am Diet Assoc 45:149–152.

    PubMed  CAS  Google Scholar 

  • Chubey BB, and G Mazza. 1983. A non-destructive method for rapid evaluation of boiling quality of potato tubers. Am Potato J 60:693–698.

    Google Scholar 

  • Dale MFB, and GR Mackay. 1994. Inheritance of table and processing quality.In: JE Bradshaw and GR Mackay (ed), Potato Genetics. CAB International Publisher, Wallingford, UK. pp. 296–297.

    Google Scholar 

  • Dalianis CD, RL Plaisted, and LC Peterson. 1966. Selection for freedom from after-cooking darkening in a potato breeding program. Am Potato J 43:207–215.

    Article  Google Scholar 

  • Dao L, and M Friedman. 1992. Chlorogenic acid content of fresh and processed potato determined by ultraviolet spectrophotometer. J Agric Food Chem 40:2152–2156.

    Article  CAS  Google Scholar 

  • Dean BB, N Jackowiak, M Nagle, J Pavek, and D Corsini. 1993. Blackspot pigment development of resistant and susceptible genotypes at harvest and during storage measured by three methods of evaluation. Am Potato J 70:201–217.

    Google Scholar 

  • Deshpande SS. 1984. Nutritional and toxicological aspects of food safety. Ed: Friedman, M. Plenum Publisher, New York. pp. 457–495.

    Google Scholar 

  • FAO. 2002. FAO Yearbook Production, 2001. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Fellers JC, and L Morin. 1962. U.S. Pat. 3,049,427, Aug. 14, 1962.

  • Friedman M. 1997. Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J Agric Food Chem 45:1523–1540.

    Article  Google Scholar 

  • Greig WS, and O Smith. 1955. Potato quality IX. Use of sequestering agents in preventing after cooking darkening in pre-peeled potatoes. Am Potato J 32:1–8.

    CAS  Google Scholar 

  • Griffiths DW, and H Bain. 1997. Photo-induced changes in the concentrations of individual chlorogenic acid isomers in potato (Solanum tuberosum) tubers and their complexation with ferric ions. Potato Res 40:307–315.

    Article  CAS  Google Scholar 

  • Griffiths DW, H Bain, and MFB Dale. 1992. Development of a rapid colorimetric method for the determination of chlorogenic acid in freeze-dried potato tubers. J Sci Food Agric 58:41–48.

    Article  CAS  Google Scholar 

  • Hackett RM, CW Ho, Z Lin, HCC Foote, RG Fray, and D Grierson. 2000. Antisense inhibition of theNr gene restores normal ripening to the tomato Never-ripe mutant, consistent with the ethylene receptor-inhibition model. Plant Physiol 124:1079–1085.

    PubMed  Article  CAS  Google Scholar 

  • Hanneman Jr RE. 1999. The reproduction biology of the potato and its implication for breeding. Potato Res 42:283–312.

    Article  Google Scholar 

  • Hasegawa D, RM Johnson, and WA Gould. 1966. Effect of cold storage on chlorogenic acid content of potatoes. J Agric Food Chem 14:165–169.

    Article  CAS  Google Scholar 

  • Heisler EG, J Sicilano, RH Treadway, and CF Woodward. 1963. Aftercooking discoloration in potatoes. Iron content in relation to blackening tendency of tissues. J Food Science 28:453–459.

    Article  CAS  Google Scholar 

  • Horton DE, and JL Anderson. 1992. Potato production in the context of the world and farm economy.In: PM Harris (ed), The Potato Crop. Chapman and Hall, London. pp. 804–805.

    Google Scholar 

  • Howard HW. 1982. The production of new varieties.In: PM Harris (ed.), The Potato Crop: The Scientific Basis for Improvement. Chapman and Hall, New York. pp. 607–646.

    Google Scholar 

  • Hughes JC. 1962. Chemistry of after-cooking discoloration in potatoes. Natl Ins Agr Bot J 9:235–236.

    Google Scholar 

  • Hughes JC, EA Ayers, and T Swain. 1962. After-cooking blackening in potatoes. I. Introduction and analysis methods. J Sci Food and Agr 13:224–228.

    Article  CAS  Google Scholar 

  • Hughes JC, and JL Evans. 1967. Studies on after-cooking blackening in potatoes. IV. Field experiments. Eur Potato J 10:16–36.

    Article  Google Scholar 

  • Hughes JC, and T Swain. 1962a. After-cooking blackening in potatoes. II. Core experiments. J Sci Food Agr 13:229–236.

    Article  Google Scholar 

  • Hughes JC, and T Swain. 1962b. After-cooking blackening in potatoes. III. Examination of the interaction of factors by in vitro experiments. J Sci Food Agric 13:358–363.

    Article  CAS  Google Scholar 

  • Jonasson T, and K Olsson. 1994. The influence of glycoalkaloids, chlorogenic acid and sugars on the susceptibility of potato tubers to wireworm. Potato Res 37:205–216.

    Article  CAS  Google Scholar 

  • Juul F. 1949. Studier over Kartoflens morkfarvning efter kogning. I. Kommission Hos Jul. Gjellerups Forlag. Kobenhavn, Denmark (Thesis).

  • Kaldy MS, and DR Lynch. 1983. Chlorogenic acid content of Russet Burbank potato. Am Potato J 60:375–377.

    Google Scholar 

  • Killick RJ. 1977. Genetic analysis of several traits in potato by means of a diallel cross. Ann Appl Biol 86:279–289.

    Article  Google Scholar 

  • Klein LB, S Chandra, and NI Mondy. 1980. The effect of phosphorus fertilization on the chemical quality of Katagdin potatoes. Am Potato J 57:259–266.

    CAS  Google Scholar 

  • Leja M. 1989. Chlorogenic acid as the main phenolic compound of mature and immature potato tubers stored at low and high temperature. Acta Physiol Plant 11:201–206.

    CAS  Google Scholar 

  • Leszczyński W. 1989. Potato tubers as a raw material for processing and nutrition.In: G Lisińska and W Leszczyński (eds), Potato Science and Technology. Elsevier Science Publishers Ltd., Essex, England. pp. 34–76.

    Google Scholar 

  • Lisińska G and M Leszczyński. 1989. Potato storage.In: G Iisińska and W Leszczyński (eds), Potato Science and Technology. Elsevier Science Publishes Ltd., Essex. pp. 150–152.

    Google Scholar 

  • Lyon GD, and FM McGill, 1988. Inhibition of growth ofErwinia carotovora in vitro by phenolics. Potato Res 31:461–467.

    Article  CAS  Google Scholar 

  • Maher EA, NJ Bate, W Ni, Y Elkind, RA Dixon, and CJ Lamb. 1994. Increased disease susceptibility of transgenic tobacco plants with suppressed level of preformed phenylpropanoid products. Proc Natl Acad Sci USA 91:7802–7806.

    PubMed  Article  CAS  Google Scholar 

  • Malmberg AG, and O Theander. 1985. Determination of chlorogenic acid in potato tubers. J Agric Food Chem 33:549–551.

    Article  CAS  Google Scholar 

  • Mann JD, and C De Lambert. 1989. A fast test of after-cooking darkening in potatoes. New Zealand J Crop Hort Sci 17:207–209.

    Google Scholar 

  • Matheis G, and HD Belitz. 1977. Studies on enzymic browning of potatoes (Solanum tuberosum). I. Phenol oxidases and phenolic compounds from different varieties. Z Lebensm Unters Forsch 163:92–95.

    PubMed  Article  CAS  Google Scholar 

  • Mazza G. 1983. Correlations between quality parameters of potatoes during growth and long-term storage. Am Potato J 60:145–159.

    CAS  Google Scholar 

  • Mazza G, and H Qi. 1991. Control of after-cooking darkening in potatoes with edible film-forming products and calcium chloride. J Agric Food Chem 39:2163–2166.

    Article  CAS  Google Scholar 

  • McIntosh TP. 1942. Cooking quality of potatoes. Scottish J Agr 24:38–47.

    Google Scholar 

  • Mehlorn H, M Lelandais, HG Korth, and CH Foyer. 1996. Ascorbate is the natural substrate for plant peroxidases. FEBS Letters 378:203–206.

    Article  Google Scholar 

  • The Merk Index 2001. Thirteenth edition. Merk & Co., Inc. Whitehouse Station, NJ. pp. 8639.

  • Mulder EG. 1949. Mineral nutrition in relation to the biochemistry and physiology of potatoes. Plant and Soil 54:387–393.

    Google Scholar 

  • Muneta CB, and F Kaisaki. 1985. Ascorbic acid-ferrous iron (Fe≫fH≫fH) complexes and after-cooking darkening of potatoes. Am Potato J 62:531–536.

    CAS  Google Scholar 

  • Ng K, and ML Weaver. 1979. Effect of pH and temperature on the hydrolysis of disodium acid pyrophosphate (SAPP) in potato processing. Am Potato J 56:63–69.

    CAS  Google Scholar 

  • Nowak J, and L Boros. 1976. Wplyw karbaminianow izopropylowych na ksztaltowanie sie niektorych cech uzytkowych przechowywanych bulw ziemniaka. (Effect of isopropyl phenylcarbamates on chemical composition and sensory properties of stored potato tubers). Rocz Nauk Roln, Seria A 102:15–28.

    Google Scholar 

  • Ortiz R, and SJ Peloquin. 1994. Use of 24-chromosome potatoes (diploids and dihaploids) for genetical analysis.In: JE Brad-shaw and GR Mackay (eds) Potato Genetics. CAB International Publisher, Wallingford, UK. pp. 133–135.

    Google Scholar 

  • Percival GC, and L Baird. 2000. Influence of storage upon light-induced chlorogenic acid accumulation in potato tubers (Solanum tuberosum L.). J Agric Chem 48:2476–2482.

    Article  CAS  Google Scholar 

  • Pika NA, VA Tarasenko, and VN Mitsko. 1984. Combining ability of potato varieties and hybrids for tuber flesh blackening after cooking. Selektsiia-i-Semenorodstro, USSR 7, pp. 16–17.

    Google Scholar 

  • Reinke J. 1882. Zur kenntnis leicht oxydierbarer Verbindungen des pflanzenkörpers. Z Physiol Chem 6:263.

    Google Scholar 

  • Rhodes MJC, and LSC Wooltorton. 1978. Changes in the activity of hydroxycinnaml CoA:Quinate hydroxycinnamyl transferase and in the levels of chlorgenic acid in potatoes and sweet potatoes stored at various temperatures. Phytochemistry 17:1225–1229.

    Article  CAS  Google Scholar 

  • Rieman GH, WE Tottingham, and JS McFarlane. 1944. Potato varieties in relation to blackening after-cooking. J Agr Res 69:21–31.

    Google Scholar 

  • Rodriguez-Saona LE, and RE Wrolstad. 1997. Influence of potato composition on chip color quality. Am Potato J 74:87–106.

    CAS  Google Scholar 

  • Roessner U, A Luedemann, D Brust, O Fiehn, T Linke, L Willmitzer, and AR Fernie. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. The Plant Cell 13:11–29.

    PubMed  Article  CAS  Google Scholar 

  • Rogozinska I, J Hippe, and K Muller. 1986. Effect of long-term of storage and controlled impact damage with subsequent short-term storage on the content of phenolic acids in the tubers of different potato cultivars. Potato Res 29:239–243.

    Article  CAS  Google Scholar 

  • Rumpf G. 1972. Gaschromatographische bestimmung loslicher inhaltsstoffe in bestrahlten und mit chemischen keimhemmungsmitteln behantdlten kartoffeln. Potato Res 15:236–245.

    Article  CAS  Google Scholar 

  • Schena M, and RW Davis. 2000. Technology standards for microarray research.In: M Schena (ed), Microarray Biochip Technology. Eaton Publishing, Natick, MA. pp. 1–18.

    Google Scholar 

  • Schwartz JH, RB Greenspun, and WL Porter. 1966. Chemical composition of potatoes. V. Further studies on concentrations to specific gravity and storage time. Am Potato J 43:361–366.

    CAS  Google Scholar 

  • Shahidi F, and M Naczk. 1995. Methods of analysis and quantification of phenolic compounds.In: Shahidi and Naczk (eds), Food Phenolics. Technomic Publishing Company, Inc., Lancaster, PA. pp. 294–295.

    Google Scholar 

  • Shekhar VC, WM Iritani, and R Arteca. 1978. Changes in ascorbic acid content during growth and short-term storage of potato tubers (Solanum tuberosum L.). Am Potato J 55:663–670.

    CAS  Google Scholar 

  • Siciliano J, EG Heisler, and WL Porter. 1969. Relation of potato size to after-cooking blackening tendency. Am Potato J 46:91–97.

    Google Scholar 

  • Silva GH, RW Chase, R Hammerschmidt, and JN Cash. 1991. After-cooking darkening of Spartan Pearl potatoes as influenced by location, phenolic acids, and citric acid. J Agric Food Chem 39:871–873.

    Article  CAS  Google Scholar 

  • Smith O. 1958. Potato quality X. Post harvest treatment to prevent aftercooking darkening. Am Potato J 35:573–583.

    CAS  Google Scholar 

  • Smith O. 1968. Potatoes: Production, Storing, Processing. AVI Publishing Co., Westport, CT. pp. 81–82.

    Google Scholar 

  • Smith O. 1975. Effect of cultural and environmental conditions on potatoes for processing.In: Potato Processing. 3rd ed. AVI Publishing Co., Westport, CT. pp. 92–101.

    Google Scholar 

  • Smith O. 1987. Effect of cultural and environmental conditions on potatoes for processing.In: WF Talburt and O Smith (eds), Potato Processing. 4th ed. Van Nostrand Reihold Company, Inc., New York. pp. 108–110.

    Google Scholar 

  • Smith O, and P Muneta. 1954. Potato quality VIII. Effect of foliar applications of sequestering and chelating agents in after-cooking darkening. Am Potato J 31:404–409.

    CAS  Google Scholar 

  • Smith O, and LB Nash. 1940. Potato quality I. Relation of fertilizers and rotation systems to specific gravity and cooking quality. Am Potato J 17:163–169.

    CAS  Google Scholar 

  • Storey RMJ, and HV Davies. 1992. Tuber quality.In: PM Harris (ed), The Potato Crop: The Scientific Basis for Improvement. Chapman and Hall, London, pp. 508–530.

    Google Scholar 

  • Sweeney JP, PA Hepner, and SY Liebeck. 1969. Organic acid, amino acid and ascorbic acid content of potatoes as affected by storage conditions. Am Potato J 46:463–469.

    CAS  Google Scholar 

  • Sweetlove LJ, B Muller-Rober, L Willmitzer, and SA Hill, 1999. The contribution of adenosine 5′-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers. Planta 209:330–337.

    PubMed  Article  CAS  Google Scholar 

  • Swiniarski E. 1968. Zwiazek pomiedzy ciemnieniem ziemniaka po ugotowaniu a niektórymi czynnikami jego skladu. (After cooking darkening and some chemical constituents of potato tubers). Hod Rosl Akl Nas 12:369–384.

    Google Scholar 

  • Takahama U. 1998. Ascorbic acid-dependent regulation of redox levels of chlorogenic acid and its isomers in the apoplast of leaves ofNicotiana tabacum L. Plant Cell Physiol 39:681–689.

    CAS  Google Scholar 

  • Tanaka M, and M Kojima. 1991. Purification and characterization of pcoumaroyl-D-glucose hydroxylase of sweet potato (Ipomoea batatas) root. Arch Biochem Biophys 284:151–157.

    PubMed  Article  CAS  Google Scholar 

  • Thomas F, S Adam, and D Friedrich. 1979. Role of citric acid in aftercooking darkening of γ-irradiated potato tubers. J Agric Food Chem 27:519–523.

    Article  CAS  Google Scholar 

  • Veerman A. 2001. Variatie in knolkwaliteit tussen en binnen partijen van consumptieaar dappelrassen. Ph.D. Dissertation, Wageningen University, Wageningen, The Netherlands.

    Google Scholar 

  • Villegas RJA, and M Kojima. 1986. Purification and characterization of hydroxycinnamol D-glucose. J Biol Chem 261:8729–8733.

    PubMed  CAS  Google Scholar 

  • Villegas RJA, T Shimokawa, H Okuyama, and M Kojima. 1987. Purification and characterization of chlorogenic acid: Chlorogenate caffeoyl transferase in sweet potato roots. Phytochemistry 26:1577–1581.

    Article  CAS  Google Scholar 

  • Waites MJ, SB Reynolds, and J Friend. 1978. The metabolism of chlorogenic acid in tuber discs of a resistant and a susceptible potato cultivar after inoculation withFusarium solani. var. caeruleum. Biochem Soc Trans 6:441–442.

    PubMed  CAS  Google Scholar 

  • Walker TS, PE Schmiediche, and RJ Humans. 1999. World trends and pattern in the potato crop: An economic and geographic survey. Potato Res 42:241–264.

    Article  Google Scholar 

  • Wang-Pruski G, T Astatkie, H De Jong, and Y Leclerc. 2003. Genetic and environmental interactions affecting potato after-cooking darkening. Acta Hort 619.

  • Wang-Pruski G, and TR Tarn. In press. Digital imaging analysis — a new methods for evaluation of potato after-cooking darkening. Acta Hort.

  • Wurster RT, and O Smith. 1965. Potato quality XX: After-cooking darkening in potatoes as related to the distribution of radioiron. Am Potato J 42:37–44.

    CAS  Google Scholar 

  • Yamaguchi, MG, J Perdue, and J MacGillivray. 1960. Nutrient composition of white rose potatoes during growth and after storage. Am Potato J 37:73–76.

    CAS  Google Scholar 

  • Young ND. 1996. QTL mapping and quantitative disease resistance in plants. Ann Rev Phytopathol 34:479–501.

    Article  CAS  Google Scholar 

  • Zipf K. 1957. The toxicology of polyphosphates. ArzneimittelForschung 7:445–446.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gefu Wang-Pruski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang-Pruski, G., Nowak, J. Potato after-cooking darkening. Am. J. Pot Res 81, 7–16 (2004). https://doi.org/10.1007/BF02853831

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02853831

Additional Key Words

  • processing quality
  • chlorogenic acid
  • ACD evaluation
  • SAPP