Skip to main content
Log in

Do variable age-related secondary factors affect ventricular geometry in hypertrophic cardiomyopathy?

  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

The relationship between cardiac shape and the age of patients with hypertrophic cardiomyopathy (HCM) has been established, and echocardiography has been accepted as the best method to quantitate ventricular cavity geometry. Recently, real-time three-dimensional volumetric data have demonstrated that children and young, middle-aged, and elderly patients with HCM have different morphologic and prognostic characteristics. This review discusses the importance of phenotypic expression and describes secondary factors that may affect ventricular cavity geometry during the progression of HCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodwin JF. The frontiers of cardiomyopathy.Br Heart J. 1982;48:1–18.

    Article  PubMed  CAS  Google Scholar 

  2. Maron BJ, Spirito P, Wesley Y, et al. Development and progression of left ventricular hypertrophy in children with hypertrophic cardiomyopathy.N Engl J Med. 1986;315:610–614.

    Article  PubMed  CAS  Google Scholar 

  3. Lompre AM, Nadal-Ginard B, Mahvadi V. Expression of the cardiac ventricular α- and β-myosin heavy chain genes is developmentally and hormonally regulated.J Biol Chem. 1984;259:6437–6446.

    PubMed  CAS  Google Scholar 

  4. Ojamaa K, Samarel AM, Kupfer JM, et al. Thyroid hormone effects on cardiac gene expression independent of cardiac growth and protein synthesis.Am J Physiol. 1992;263:E534-E540.

    PubMed  CAS  Google Scholar 

  5. Semsarian C, French J, Trent RJ, et al. The natural history of left ventricular wall thickening in hypertrophic cardiomyopathy.Aust N Z J Med. 1997;27:51–58.

    PubMed  CAS  Google Scholar 

  6. Vitale DF, Bonow RO, Calabro R, et al. Myocardial ultrasonic tissue characterization in pediatric and adult patients with hypertrophic cardiomyopathy.Circulation. 1996;94:2826–2830.

    PubMed  CAS  Google Scholar 

  7. Okada H. An investigation of the collagen in cardiomyopathic hamsters.Hokkaido J Med Sci. 1993;68:894–905.

    PubMed  CAS  Google Scholar 

  8. Hamby RI, Antablian A. Hypertrophic subaortic stenosis is not rare in the eighth decade.Geriatrics. 1976;31:71–74.

    PubMed  CAS  Google Scholar 

  9. Berger M, Rethy C, Goldberg E. Unsuspected hypertrophic subaortic stenosis in the elderly diagnosed by echocardiography.J Am Geriatr Soc. 1979;27:178–182.

    PubMed  CAS  Google Scholar 

  10. Lever HM, Karam RF, Currie PJ, et al. Hypertrophic cardiomyopathy in the elderly: distinction from the young based on cardiac shape.Circulation. 1989;79:580–589.

    PubMed  CAS  Google Scholar 

  11. Cohen S, Benichou M, Larbi MB, et al. Myocardiopathie hypertrophique: evolution et pronostic. Soixante observations.Presse Med. 1986;15:423–427.

    PubMed  CAS  Google Scholar 

  12. Spirito P, Maron BJ. Relation between extent of left ventricular hypertrophy and age in hypertrophic cardiomyopathy.J Am Coll Cardiol. 1989;13:820–823.

    PubMed  CAS  Google Scholar 

  13. Klues GK, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients.J Am Coll Cardiol. 1995;26:1699–1708.

    Article  PubMed  CAS  Google Scholar 

  14. Krasnow N, Stein RA. Hypertrophic cardiomyopathy in the aged.Am Heart J. 1978;96:326–336.

    Article  PubMed  CAS  Google Scholar 

  15. Whiting RB, Powell WJ Jr, Dinsmore RE, et al. Idiopathic hypertrophic subaortic stenosis in elderly.N Engl J Med. 1971;285:196–200.

    Article  PubMed  CAS  Google Scholar 

  16. Wadehra D, Ganar RM, Scanlon PJ. Prognosis of hypertrophic cardiomyopathy with asymmetric septal hypertrophy.Postgrad Med J. 1985;61:1107–1109.

    Google Scholar 

  17. Savage DD, Castelli WP, Abott RD, et al. Hypertrophic cardiomyopathy and its markers in the general population. The great masquerade revisited: the Framingham study.J Cardiovasc Ultrasonogr. 1983;2:41–47.

    Google Scholar 

  18. Brock R. Functional obstruction of the left ventricle (acquired aortic subvalvular stenosis).Guys Hosp Rep. 1957;106:221–238.

    PubMed  CAS  Google Scholar 

  19. Yalçin F, Tsujino H, Greenberg N, et al. Real-time three-dimensional echocardiographic evaluation of mitral annular characteristics in myocardial hypertrophy.Eur Heart J. 1999;291:P1599.

    Google Scholar 

  20. Yalçin F, Shiota T, Odabashian J, et al. Comparison by real-time three-dimensional echocardiography of left ventricular geometry in hypertrophic cardiomyopathy versus secondary left ventricular hypertrophy.Am J Cardiol. 2000;85:1035–1038.

    Article  PubMed  Google Scholar 

  21. Spirito P, Maron BJ. Absence of progression of left ventricular hypertrophy in adult patients with hypertrophic cardiomyopathy.J Am Coll Cardiol. 1987;9:1013–1017.

    Article  PubMed  CAS  Google Scholar 

  22. Spirito P, Chiarella F, Carratino L, et al. Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population.N Engl J Med. 1989;320:749–755.

    Article  PubMed  CAS  Google Scholar 

  23. Hina K, Kusachi S, Iwasaki K, et al. Progression of left ventricular enlargement in patients with hypertrophic cardiomyopathy: incidence and prognostic value.Clin Cardiol. 1993;16:403–407.

    Article  PubMed  CAS  Google Scholar 

  24. Vikstrom KL, Factor SM, Leinwand LA. A murine model for hypertrophic cardiomyopathy.Z Kardiol. 1995;84:49–54.

    PubMed  Google Scholar 

  25. Spirito P, Maron BJ. Significance of left ventricular outflow tract cross-sectional area in hypertrophic cardiomyopathy: a two-dimensional echocardiographic assessment.Circulation. 1983;67:1100–1118.

    PubMed  CAS  Google Scholar 

  26. Qin JX, Shiota T, Lever HM, et al. Left ventricular outflow tract area measured by real-time 3D echocardiography in hypertrophic obstructive cardiomyopathy.J Am Soc Echocardiogr. 1999; 12:202M.

    Google Scholar 

  27. Ciro E, Maron BJ, Bonow RO, et al. Relation between marked changes in left ventricular outflow tract gradient and disease progression in hypertrophic cardiomyopathy.Am J Cardiol. 1984; 53:1103–1109.

    Article  PubMed  CAS  Google Scholar 

  28. Horimoto M, Yokota K, Inoue H, et al. Development of obstructive hypertrophic cardiomyopathy from nonobstructive hypertrophic cardiomyopathy.Am J Cardiol. 1998;82:403–405.

    Article  PubMed  CAS  Google Scholar 

  29. Krasnow N. Subaortic septal bulge simulates hypertrophic cardiomyopathy by angulation of the septum with age, independent of focal hypertrophy. An echocardiographic study.J Am Soc Echocardiogr. 1997;10:545–555.

    Article  PubMed  CAS  Google Scholar 

  30. Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy.N Engl J Med. 1995;332:1058–1064.

    Article  PubMed  CAS  Google Scholar 

  31. Solomon SD, Jarcho JA, McKenna WJ, et al. Familial hypertrophic cardiomyopathy is a genetically heterogeneous disease.J Clin Invest. 1990;86:993–999.

    Article  PubMed  CAS  Google Scholar 

  32. Ojamaa K, Samarel AM, Kupfer JM, et al. Thyroid hormone effects on cardiac gene expression independent of cardiac growth and protein synthesis.Am J Physiol. 1992;263:E534-E540.

    PubMed  CAS  Google Scholar 

  33. Fei L, Slade AK, Prasad K, et al. Is there increased sympathetic activity in patients with hypertrophic cardiomyopathy?J Am Coll Cardiol. 1995;26:472–480.

    Article  PubMed  CAS  Google Scholar 

  34. Shimizu M, Sugihara N, Kita Y, et al. Long-term course and cardiac sympathetic nerve activity in patients with hypertrophic cardiomyopathy.Br Heart J. 1992;67:155–160.

    Article  PubMed  CAS  Google Scholar 

  35. Schafers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy.Circ Res. 1998;82:57–62.

    PubMed  CAS  Google Scholar 

  36. Limbruno U, Strata G, Zucchi R, et al. Altered autonomic cardiac control in hypertrophic cardiomyopathy. Role of outflow tract obstruction and myocardial hypertrophy.Eur Heart J. 1998;19:146–153.

    Article  PubMed  CAS  Google Scholar 

  37. Dimitrow PP, Czarnecka D, Jaszcz KK, et al. Sex differences in age at onset of symptoms in patients with hypertrophic cardiomyopathy.J Cardiovasc Risk. 1997;4:33–35.

    Article  PubMed  CAS  Google Scholar 

  38. Lompre AM, Nadal-Ginard B, Mahdavi V. Expression of the cardiac ventricular α-and β-myosin heavy chain genes is developmentally and hormonally regulated.J Biol Chem. 1984;259:6437–6446.

    PubMed  CAS  Google Scholar 

  39. Rohde LE, Zhi G, Aranki SF, et al. Gender-associated differences in left ventricular geometry in patients with aortic valve disease and effect of distinct overload subsets.Am J Cardiol. 1997;80:475–480.

    Article  PubMed  CAS  Google Scholar 

  40. Legget ME, Kuusisto J, Healy NL, et al. Gender differences in left ventricular function at rest and with exercise in asymptomatic aortic stenosis.Am Heart J. 1996;131:94–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Yalçin M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yalçin, F., Muderrisoglu, H., Korkmaz, M.E. et al. Do variable age-related secondary factors affect ventricular geometry in hypertrophic cardiomyopathy?. Adv Therapy 19, 253–257 (2002). https://doi.org/10.1007/BF02853170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02853170

Keywords

Navigation