Skip to main content
Log in

Positron scattering from hydrocarbons

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The total cross sections for positron impact on hydrocarbons have been calculated using the additivity rule in which the total cross section for a molecule is the sum of the total cross section for the constituent atoms. The energy range considered is from a few eV to several thousand eV. The total cross sections for positron impact on an atom are calculated by employing a complex spherical potential which comprises of a static, polarization and an absorption potential. We have good agreement with the experimental results for hydrocarbons for positron energy ⩾100 eV. Our results also agree with the available calculations for CH4 and C2H2 which employed full molecular wavefunctions beyond 100 eV. Our absorption cross sections also agree with molecular wave-function calculations for C2H2 and CH4 beyond 100 eV. We have shown the Bethe plots fore +−C ande +−H scattering systems and Bethe parameters have been extracted. We have fitted the cross section for positron impact on hydrocarbons in the formσ t(C n H m )=naE b+mcE d in the energy range 300–5000 eV wherea=195.0543,b=0.7986,c=371.1757 andd=1.1379 withE in eV andσ t in 10−16 cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K L Baluja and A Jain,Phys. Rev. A45, 7838 (1992)

    ADS  Google Scholar 

  2. T S Stein and W E Kauppila, inElectronic and atomic collisions, edited by D C Lorentzet al (Elsevier, New York, 1986) p. 105

    Google Scholar 

  3. C Szmytkowski,Z. Phys. D13, 69 (1989)

    ADS  Google Scholar 

  4. O Sueoka, inAtomic physics with positrons, edited by J W Humberston and E A G Armour (Plenum, New York, 1987), p. 41

    Google Scholar 

  5. E A G Armour,Phys. Rep. 169, 1 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. H S W Massey, E H S Burhop and H B Gilbody,Electronic and ionic impact phenomena (Clarendon, Oxford, 1969) Vol II

    Google Scholar 

  7. C J Joachain,Quantum collision theory (North Holland, Amsterdam, 1979) Vol. 1

    Google Scholar 

  8. K N Joshipura and P M Patel,Pramana — J. Phys. 39, 293 (1992)

    ADS  Google Scholar 

  9. K N Joshipura and P M Patel,Z. Phys. D29, 269 (1994)

    ADS  Google Scholar 

  10. S K Tyagi, Total cross-sections for electron scattering by hydrocarbons, M Phil. Thesis, Meerut University (1993)

  11. O J Orient and S K Srivastava,J. Phys. B20, 3923 (1987)

    ADS  Google Scholar 

  12. S M Younger and T D Mark,Electron impact ionization (Springer, Berlin, 1985) Vol I

    Google Scholar 

  13. B H Bransden,Atomic collision theory (Benjamin/Cummings Reading, M A, 1983)

    Google Scholar 

  14. K Floeder, D Fromme, W Raith, A Schwab and G Sinapius,J. Phys. B18, 3347 (1985)

    ADS  Google Scholar 

  15. O Sueoka and S Mori,J. Phys. B19, 4035 (1986)

    ADS  Google Scholar 

  16. O Sueoka,J. Phys. B21, L361 (1988)

  17. O Sueoka and S Mori,J. Phys. B22, 963 (1989)

    ADS  Google Scholar 

  18. K L Baluja and A Jain,Phys. Rev. A46, 1279 (1992)

    ADS  Google Scholar 

  19. A E S Green, D L Sellin and A S Zachor,Phys. Rev. 184, 1 (1969)

    Article  ADS  Google Scholar 

  20. P G Burke,Potential scattering in atomic physics (Plenum Press, New York, 1977)

    Google Scholar 

  21. A Jain,Phys. Rev. A41, 2437 (1990)

    ADS  Google Scholar 

  22. J K O’Connell and N F Lane,Phys. Rev. A27, 1893 (1983)

    ADS  Google Scholar 

  23. G Staszewska, D W Schwenke, D Thirumalai and D G Truhlar,J. Phys. B16, L281 (1983)

  24. G Staszewska, D W Schwenke, D Thirumalai and D G Truhlar,Phys. Rev. A28, 2740 (1983)

    ADS  Google Scholar 

  25. G Staszewska, D W Schwenke and D G Truhlar,J. Chem. Phys. 81, 335 (1984)

    Article  ADS  Google Scholar 

  26. G Staszewska, D W Schwenke and D G Truhlar,Phys. Rev. A29, 3078 (1984)

    ADS  Google Scholar 

  27. K R Hoffman, M S Dababneh, Y F Hsieh, W E Kauppila, V Pol, J H Smart and T S Stein,Phys. Rev. A25, 1393 (1982)

    ADS  Google Scholar 

  28. M Charlton, T C Griffith, G R Heyland and G L Wright,J. Phys. B13, L353 (1980)

  29. M S Dababneh, Y F Hsieh, W E Kauppila, C K Kwan, S J Smith, T S Stein and M N Uddin,Phys. Rev. A38, 1207 (1988)

    ADS  Google Scholar 

  30. D Fromme, G Kruse, W Raith and G Sinapius,J. Phys. B21, L261 (1988)

  31. B Adamczyk, A J H Boerboom, B L Schram and J Kistemaker,J. Chem. Phys. 44, 4640 (1966)

    Article  ADS  Google Scholar 

  32. H F Winters,J. Chem. Phys. 63, 3462 (1975)

    Article  ADS  Google Scholar 

  33. M Inokuti,Rev. Mod. Phys. 43, 297 (1971)

    Article  ADS  Google Scholar 

  34. K Omidvar, H L Kyle and E C Sullivan,Phys. Rev. A5, 1174 (1972)

    ADS  Google Scholar 

  35. S Zhou, W E Kauppila, C K Kwan and T S Stein,Phys. Rev. Lett. 72, 1443 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raizada, R., Baluja, K.L. Positron scattering from hydrocarbons. Pramana - J. Phys. 46, 431–449 (1996). https://doi.org/10.1007/BF02852270

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02852270

Keywords

PACS Nos

Navigation