Skip to main content
Log in

Application of physiology-based pharmacokinetic and pharmacodynamic modeling to individualized target-controlled propofol infusions

  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

This study compared the ability of the physiology-based pharmacokinetic (PBPK) model with that of compartmental models used in propofol infusion devices to predict the pharmacokinetics and pharmacodynamics of propofol in various patient groups (children, pregnant women, young men, normal weight adults, and obese adults). With a PBPK model, loss of consciousness (LOC) and recovery of consciousness (ROC) corresponded to a narrow range of brain tissue concentrations (2.2–4.0 mg/L). With the compartmental models, predicted effect concentrations were also within a narrow range at LOC, but were outside the range at ROC. In individuals of normal weight, coefficients of variation (CV) of the predicted brain or effect concentrations at LOC were in a similar range—between 18% and 32%. In obese individuals, however, interindividual CV values for brain or effect concentrations were 41% (PBPK) and 93% (compartmental). This comparison suggests the increased flexibility of PBPK models over compartmental models, the latter of which rely heavily on the patient group from which the model was derived. The incorporation of PBPK models may provide target-controlled infusions with enhanced ability to predict response in a wide variety of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans.Anesth Analg. 1987; 66: 1256–1263.

    Article  PubMed  CAS  Google Scholar 

  2. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children.Br J Anaesth. 1991; 67: 41–48.

    Article  PubMed  CAS  Google Scholar 

  3. Munoz HR, Cortinez LI, Ibacache ME, Altmann C. Estimation of the plasma effect site equilibration rate constant (keo) of propofol in children using the time to peak effect.Anesthesiology. 2004; 101: 1269–1274.

    PubMed  CAS  Google Scholar 

  4. Kazama T, Ikeda K, Morita K, et al. Investigation of effective anesthesia induction doses using a wide range of infusion rates with undiluted and diluted propofol.Anesthesiology. 2000; 92: 1017–1028.

    Article  PubMed  CAS  Google Scholar 

  5. Absalom A, Kenny G. ‘Paedfusor’ pharmacokinetic data set.Br J Anaesth. 2005; 95: 110.

    Article  PubMed  CAS  Google Scholar 

  6. Kazama T, Morita K, Ikeda T, Kurita T, Sato S. Comparison of predicted induction dose with predetermined physiologic characteristics of patients and with pharmacokinetic models incorporating those characteristics as covariates.Anesthesiology. 2003; 98: 299–305.

    Article  PubMed  CAS  Google Scholar 

  7. Ginsberg G, Hattis D, Russ A, Sonawane B. Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children’s risks from environmental agents.J Toxicol Environ Health. 2004; 67: 297–329.

    Article  CAS  Google Scholar 

  8. Theil FP, Guentert TW, Haddad S, Poulin P. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection.Toxicol Lett. 2003; 138: 29–49.

    Article  PubMed  CAS  Google Scholar 

  9. Rowland M, Balant L, Peck C. Physiologically based pharmacokinetics in drug development and regulatory science: a workshop report (Georgetown University, Washington, DC, May 29–30, 2002).AAPS Pharm Sci. 2004; 6: 1–12.

    Article  Google Scholar 

  10. Valtonen M, Iisalo E, Kanto J, Rosenberg P. Propofol as an induction agent in children: pain on injection and pharmacokinetics.Acta Anaesthesiol Scand. 1989; 33: 152–155.

    Article  PubMed  CAS  Google Scholar 

  11. Raoof AA, Van Obbergh LJ, Verbeeck RK. Propofol pharmacokinetics in children with biliary atresia.Br J Anaesth. 1995; 74: 46–49.

    Article  PubMed  CAS  Google Scholar 

  12. Saint-Maurice C, Cockshott ID, Douglas EJ, Richard MO, Harmey JL. Pharmacokinetics of propofol in young children after a single dose.Br J Anaesth. 1989; 63: 667–670.

    Article  PubMed  CAS  Google Scholar 

  13. Kanto J, Rosenberg P. Propofol in cesarean section. A pharmacokinetic and pharmacodynamic study.Methods Find Exp Clin Pharmacol. 1990; 12: 707–711.

    PubMed  CAS  Google Scholar 

  14. Mertens MJ, Olofsen E, Burm AG, Bovill JG, Vuyk J. Mixed-effects modeling of the influence of alfentanil on propofol pharmacokinetics.Anesthesiology. 2004; 100: 795–805.

    Article  PubMed  CAS  Google Scholar 

  15. Ickx B, Cockshott ID, Barvais L, et al. Propofol infusion for induction and maintenance of anaesthesia in patients with end-stage renal disease.Br J Anaesth. 1998; 81: 854–860.

    PubMed  CAS  Google Scholar 

  16. Lysakowski C, Dumont L, Pellegrini M, Clergue F, Tassonyi E. Effects of fentanyl, alfentanil, remifentanil and sufentanil on loss of consciousness and bispectral index during propofol induction of anesthesia.Br J Anaesth. 2001; 86: 523–527.

    Article  PubMed  CAS  Google Scholar 

  17. Willmann S, Schmitt W, Keldenich J, Lippert J, Dressman JB. A physiological model for the estimation of the fraction dose absorbed in humans.J Med Chem. 2004; 47: 4022–4031.

    Article  PubMed  CAS  Google Scholar 

  18. Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim: a physiologically based pharmacokinetic ‘whole-body’ model.Biosilico. 2003; 1: 121–124.

    Article  CAS  Google Scholar 

  19. Blackburn ST.Maternal, Fetal, & Neonatal Physiology: A Clinical Perspective. 2nd ed. Philadelphia, Pa: Elsevier Publishing; 2003.

    Google Scholar 

  20. Hardman JG, Limbird LE.Goodman and Gilman’s: The Pharmacological Basis of Therapeutics. 10th ed. New York, NY: McGraw Hill; 2001.

    Google Scholar 

  21. Jones RDM, Chan K, Andrew LJ. Pharmacokinetics of propofol in children.Br J Anaesth. 1990; 65: 661–667.

    Article  PubMed  CAS  Google Scholar 

  22. Murat I, Billard V, Vernois J, et al. Pharmacokinetics of propofol after a single dose in children aged 1–3 years with minor burns. Comparison of three data analysis approaches.Anesthesiology. 1996; 84: 526–532.

    Article  PubMed  CAS  Google Scholar 

  23. Knibbe CA, Melenhorst-de Jong G, Mestrom M, et al. Pharmacokinetics and effects of propofol 6% for short-term sedation in paediatric patients following cardiac surgery.Br J Clin Pharmacol. 2002; 54: 415–422.

    Article  PubMed  CAS  Google Scholar 

  24. Ludbrook GL, Visco E, Lam AM. Relation between brain concentrations, electroencephalogram, middle cerebral artery blood flow velocity, and cerebral oxygen extraction during induction of anesthesia.Anesthesiology. 2002; 97: 1363–1370.

    Article  PubMed  CAS  Google Scholar 

  25. Mi WD, Sakai T, Kudo M, Matsuki A. Performance of bispectral index and auditory evoked potential monitors in detecting loss of consciousness during anaesthetic induction with propofol with and without fentanyl.Eur J Anaesth. 2004; 10: 807–811.

    Article  Google Scholar 

  26. Flaishon R, Windsor A, Sigl J, Sebel PS. Recovery of consciousness after thiopental or propofol: bispectral index and the isolated forearm technique.Anesthesiology. 1997; 86: 613–619.

    Article  PubMed  CAS  Google Scholar 

  27. Servin F, Farinotti R, Haberer J, Desmonts J. Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxide.Anesthesiology. 1993; 78: 657–665.

    Article  PubMed  CAS  Google Scholar 

  28. Levitt DG, Schnider TW. Human physiologically based pharmacokinetic model for propofol.BMC Anaesthesiol. 2005; 5: 1–4.

    Article  Google Scholar 

  29. Frohlich MA, Dennis DM, Shuster JA, Melker RJ. Precision and bias of target controlled propofol infusion for sedation.Br J Anaesth. 2005; 94: 434–437.

    Article  CAS  Google Scholar 

  30. Bouillon T, Shafer SL. Does size matter?Anesthesiology. 1998; 89: 557–560.

    Article  PubMed  CAS  Google Scholar 

  31. Slepchenko G, Simon N, Goubaux B, et al. Performance of target-controlled sufentanil infusion in obese patients.Anesthesiology. 2003; 98: 65–73.

    Article  PubMed  CAS  Google Scholar 

  32. Absalom A, Amutike D, Lal A, White M, Kenny GNC. Accuracy of the ‘Paedfusor’ in children undergoing cardiac surgery or catheterization.Br J Anaesth. 2003; 91: 507–513.

    Article  PubMed  CAS  Google Scholar 

  33. Kataria BK, Ved SA, Nicodemus HF, et al. The pharmacokinetics of propofol in children using three different data analysis approaches.Anesthesiology. 1994; 80: 104–122.

    Article  PubMed  CAS  Google Scholar 

  34. Wintermark M, Lepori D, Cotting J, et al. Brain perfusion in children: evolution with age assessed by quantitative perfusion computed tomography.Pediatrics. 2004; 113: 1642–1652.

    Article  PubMed  Google Scholar 

  35. Casati A, Putzu M. Anesthesia in the obese patient: pharmacokinetic considerations.Br J Anaesth. 2005; 17: 134–145.

    CAS  Google Scholar 

  36. Rigby-Jones AE, Nolan JA, Priston MJ, Wright P, Sneyd R, Wolf AR. Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit.Anesthesiology. 2002; 97: 1393–1400.

    Article  PubMed  CAS  Google Scholar 

  37. Gan TJ, Glass PS, Sigl J, et al. Women emerge from general anesthesia with propofol/alfentanil/ nitrous oxide faster than men.Anesthesiology. 1999; 90: 1283–1287.

    Article  PubMed  CAS  Google Scholar 

  38. Milne SE, Kenny GN, Schraag S. Propofol sparing effect of remifentanil using closed-loop anaesthesia.Br J Anaesth. 2003; 90: 623–629.

    Article  PubMed  CAS  Google Scholar 

  39. Schnider TW, Minto CF, Gambus PL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers.Anesthesiology. 1998; 88: 1170–1182.

    Article  PubMed  CAS  Google Scholar 

  40. Vuyk J, Engbers FHM, Burm AG, Vletter A, Bovill JG. Performance of computer-controlled infusion of propofol: an evaluation of five pharmacokinetic parameter sets.Anesthesiology. 1995; 81: 1275–1282.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edginton, A.N., Schmitt, W. & Willmann, S. Application of physiology-based pharmacokinetic and pharmacodynamic modeling to individualized target-controlled propofol infusions. Adv Therapy 23, 143–158 (2006). https://doi.org/10.1007/BF02850355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02850355

Keywords

Navigation