Skip to main content
Log in

Assessing thrombosis risk in patients with idiopathic, diabetic, and postsurgical gastroparesis

  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Patients with severe gastrointestinal motility disorders are often found to have intravenous access clots or deep venous thrombosis. It has previously been reported that many patients who have intravenous access thrombosis have concomitant thrombotic risk factors. In this study, the goal was to determine the underlying prevalence of hypercoagulable risk in a series of patients with documented gastroparesis. Investigators studied 62 consecutive patients (52 female; mean age, 42 y) who had symptoms of gastroparesis. All patients were evaluated for placement of a gastric neural stimulation device, or they had had one placed previously. Patients underwent a hematologic interview and standardized coagulation measures of thrombotic risk. Laboratory studies measured acquired elevations of Factor VII, Factor VIII, fibrinogen, lupus anticoagulant panel, antiphospholipid antibody panel, homocysteine (in the setting of kidney disease), and activated protein resistance. Investigators also measured congenital factors: Factor VIII (with C-reactive protein levels), antithrombin III, protein C, protein S (total and free), Factor II mutation, Factor V Leiden, methylenetetrahydrofolate reductase, and homocysteine. Fifty-five patients (89%) were found to have detectable hypercoagulable risk factors. Twentyfive of the 62 patients (40%) had a documented history of abnormal clotting, including deep venous thrombosis, intravenous access thrombosis, and pulmonary embolism. All patients with a previous history of thrombosis had detectable clotting abnormalities. Of 56 patients, 40 (71%) had hypercoagulability and did not have diabetes (P=.036), and 20 (36%) had hypercoagulability and no known history of infection. However, this value was not statistically significant when infection and hypercoagulability were compared (P=.408). A high prevalence of acquired and congenital hypercoagulable defects has been observed in patients with gastroparesis, which may predispose them to arterial and venous clots. This unique finding warrants consideration of coagulation evaluation in patients with severe gastroparesis, especially when these patients are placed in high-risk thrombophilic situations, such as hospitalization, prolonged intravenous access, and surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prandoni P. Acquired risk factors for venous thromboembolism in medical patients.Pathophysiol Haemost Thromb. 2006; 35(1-2): 128–132.

    Article  PubMed  Google Scholar 

  2. Sylvia H. Venous thromboembolism in medical patients—the scope of the problem.Semin Thromb Hemost. 2003; 29: 17–22.

    Article  Google Scholar 

  3. Miehsler W, Reinisch W, Valic E, et al. Is inflammatory bowel disease an independent and diseasespecific risk factor for thromboembolism?Gut. 2004; 53: 542–548.

    Article  PubMed  CAS  Google Scholar 

  4. Alkeshen M, Edick C, Hak L, et al. High incidence of protein S abnormalities in patients with catheter-related thrombosis.Gastroenterology. 2000; 118(Part 2): A1064.

    Article  Google Scholar 

  5. Alkeshen M, Edick C, Hak L, et al. Patients with IV catheter-related thrombosis have multiple coagulation and autoimmune abnormalities on baseline diagnostic tests.Gastroenterology. 2000; 118(Part 2): A1331.

    Google Scholar 

  6. Kumar A, Lomas R, Abell T, Dugdale M, Voeller G, Smalley D. Serum autoantibodies predispose to superior venacaval syndrome associated with central access in gastroparesis.Gastroenterology. 1994; 106(Part 2): A528.

    Google Scholar 

  7. Werkman R, Smalley D, Duncan U, et al. Is thrombosis of central venous access in idiopathic upper GI dysmotility related to presence of circulating autoantibodies?Gastroenterology. 1995; 108: A734.

    Google Scholar 

  8. Dumenco LL, Blair AJ, Sweeney JD. The results of diagnostic studies for thrombophilia in a large group of patients with a personal or family history of thrombosis.Am J Clin Pathol. 1998; 110: 673–682.

    PubMed  CAS  Google Scholar 

  9. Koeleman BPC, Reitsma PH, Bertina RM. Familial thrombophilia: a complex genetic disorder.Semin Hematol. 1997; 34: 256–264.

    PubMed  CAS  Google Scholar 

  10. Seligsohn U, Lubetsky A. Genetic susceptibility to venous thrombosis.N Engl J Med. 2001; 344: 1222–1231.

    Article  PubMed  CAS  Google Scholar 

  11. Hoppener MR, Kraaijenhagen RA, Hutten A, Buller HR, Peters RJG, Levi M. Beta-receptor blockade decreases elevated F VIII:C in patients with deep vein thrombosis.J Thromb Haemost. 2004; 3: 1316–1320.

    Article  Google Scholar 

  12. DeGiorgio R, Guerrini S, Barbara G, et al. Inflammatory neuropathies of the enteric nervous system.Gastroenterology. 2004; 126: 1872–1883.

    Article  Google Scholar 

  13. Rozen R. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR).Thromb Haemost. 1997; 78: 523–526.

    PubMed  CAS  Google Scholar 

Addendum References General Methods

  1. Thomas RH. Update on thrombophilic disorders.Lab Med. 2003; 9: 34.

    Google Scholar 

  2. National Committee for Clinical Laboratory Standards.Procedures for Handling and Processing of Blood Specimens. Approved Guideline. 2nd ed, Vol 19. Wayne, Pa: NCCLS; 1999.

    Google Scholar 

  3. College of American Pathologists. Proficiency testing and accreditation requirements. Available at: http://www.cap.org/apps/cap.portal. Accessed 2004.

  4. Health Care Financing Administration, Public Health Service (Centers for Disease Control and Prevention). Clinical laboratory improvement amendments of 1988 (Final Rule, 42:CFR 493, etc.), HSQ-176-FC (57 FR 7002). Issued February 28, 1992, effective September 1, 1992, plus additional amendments through 2002. Baltimore Md: Centers for Medicare & Medicaid Services (formerly HCFA). Available at: www.cms.hhs.gov/clia.

Addendum References Factor VII

  1. Iacoviello L, Di Castelnuovo A, De Kniff P, et al. Polymorphisms in the coagulation Factor VII gene and the risk of myocardial infarction.N Engl J Med. 1998; 338: 79–85.

    Article  PubMed  CAS  Google Scholar 

  2. Meade TW, Ruddock V, Stirling Y, Chakrabarti R, Miller GJ. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study.Lancet. 1993; 342: 1076–1079.

    Article  PubMed  CAS  Google Scholar 

  3. Corral J, Gonzalez-Conejero R, Lozano ML, Rivera J, Vicente V. Genetic polymorphisms of Factor VII are not associated with arterial thrombosis.Blood Coagul Fibrinolysis. 1998; 9: 267–272.

    Article  PubMed  CAS  Google Scholar 

  4. Larsen LF, Bladbjerg EM, Jespersen J, Marckmann P. Effects of dietary fat quality and quantity on postprandial activation of blood coagulation Factor VII.Arterioscler Thromb Vasc Biol. 1997; 17: 2904–2909.

    PubMed  CAS  Google Scholar 

Addendum References Factor VIII

  1. O’Donnell J, Tuddenham EGD, Manning R, Kemball-Cook G, Johnson D, Laffan M. High prevalence of elevated Factor VIII levels in patients referred for thrombophilia screening: role of increased synthesis and relationship to the acute phase reaction.Thromb Haemost. 1997; 77: 825–828.

    PubMed  CAS  Google Scholar 

  2. Catto AJ, Carter AM, Barrett JH, Bamford J, Rice PJ, Grant PJ. von Willebrand Factor and Factor VIII:C in acute cerebrovascular disease: relationship to stroke subtype and mortality.Thromb Haemost. 1997; 77: 1104–1108.

    PubMed  CAS  Google Scholar 

  3. Kamphuisen PW, Eikenboom JCJ, Bertina RM. Elevated Factor VIII levels and the risk of thrombosis.Arterioscler Thromb Vasc Biol. 2001; 21: 732–738.

    Google Scholar 

  4. Kamphuisen PW, Lensen R, Houwing-Duistermaat JJ, et al. Heritability of elevated Factor VIII antigen levels in Factor V Leiden families with thrombophilia.Br J Haematol. 2000; 109: 519–522.

    Article  PubMed  CAS  Google Scholar 

  5. Conlan MG, Folson AR, Finch A, et al. Associations of Factor VIII and von Willebrand Factor with age, race, sex, and risk factors for atherosclerosis (the atherosclerosis risk in communities [ARIC] study).Thromb Haemost. 1993; 70: 380–385.

    PubMed  CAS  Google Scholar 

  6. O’Donnell J, Mumford AD, Manning RA, Laffan M. Elevation of F VIII:C in venous thromboembolism is persistent and independent of the acute phase response.Thromb Haemost. 2000; 83: 10–13.

    PubMed  CAS  Google Scholar 

  7. Kamphuisen PW, Eikenaboom JC, Vos HLA, et al. Increased levels of F VIII and fibrinogen in patients with venous thrombosis are not caused by acute phase reactions.Thromb Haemost. 1999; 81: 680–683.

    PubMed  CAS  Google Scholar 

  8. Kraaijenhagen RA, Pieternella S, Anker INT, et al. High plasma concentration of F VIIIC is a major risk factor for venous thromboembolism.Thromb Haemost. 2000; 85: 5–9.

    Google Scholar 

  9. Laffan MA, Manning R. The influence of Factor VIII on measurement of activated Protein C resistance.Blood Coagul Fibrinolysis. 1996; 7: 761–765.

    Article  PubMed  CAS  Google Scholar 

Addendum References Fibrinogen

  1. Mead TW, Mellows S, Brozovic M, et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study.The Lancet. 1986; 2: 533–537.

    Article  Google Scholar 

  2. Cushman M, Yanez D, Psalty BM, et al. Association of fibrinogen and coagulation Factors VII and VIII with cardiovascular risk factors in the elderly.Am J Epidemiol. 1996; 43: 665–676.

    Google Scholar 

  3. Rosendaal FR. Thrombosis in the young: epidemiology and risk factors. A focus on venous thrombosis.Thromb Haemost. 1997; 78: 1–6.

    PubMed  CAS  Google Scholar 

  4. Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, et al. Fibrinogen as a risk factor for stroke and myocardial infarction.N Engl J Med. 1984; 311: 501–505.

    Article  PubMed  CAS  Google Scholar 

Addendum References Proteins C and S

  1. Esmon CT, Schwarz HP. An update on clinical and basic aspects of the protein C anticoagulant pathway.Trends Cardiovasc Med. 1995; 5: 141–148.

    Article  CAS  Google Scholar 

  2. Koster T, Rosendaal FR, Briet E, et al. Protein C deficiency in a controlled series of unselected outpatients: an infrequent but clear risk factor for venous thrombosis (Leiden thrombophilia study).Blood. 1995; 85: 2756–2761.

    PubMed  CAS  Google Scholar 

  3. Comp PC, Esmon CT. Recurrent venous thromboembolism in patients with a partial deficiency of protein S.N Engl J Med. 1984; 311: 1525–1528.

    Article  PubMed  CAS  Google Scholar 

  4. Schwartz H, Fischer M, Hopmeier P, Batard MA, Griffin HH. Familial protein S deficiency is associated with recurrent thrombosis.Blood. 1984; 64: 1297–1300.

    Google Scholar 

  5. Schwarz HP, Heeb MJ, Wencel-Drake JD, Griffin JH. Identification and quantification of protein S in human platelets.Blood. 1995; 66: 1452–1455.

    Google Scholar 

Addendum References Homocysteine

  1. Clark R, Daly L, Robinson K, et al. Hyperhomocysteinemia: an independent risk factor for vascular disease.N Engl J Med. 1991; 324: 1149–1155.

    Article  Google Scholar 

  2. Boers GHJ. Hyperhomocysteinemia as a risk factor for arterial and venous disease.Thromb Haemost. 1997; 78: 520–522.

    PubMed  CAS  Google Scholar 

  3. Selhub J, D’Angelo A. Hyperhomocysteinemia and thrombosis: acquired conditions.Thromb Haemost. 1997; 78: 527–531.

    PubMed  CAS  Google Scholar 

  4. Welch GN, Loscalzo J. Review article: homocysteine and atherothrombosis.N Engl J Med. 1998; 338: 1042–1050.

    Article  PubMed  CAS  Google Scholar 

  5. Nygard O, Vollset SE, Refsum H, et al. Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study.JAMA. 1995; 274: 1526–1533.

    Article  PubMed  CAS  Google Scholar 

  6. Rassoul F, Richter V, Janke C, et al. Plasma homocysteine and lipoprotein profile in patients with peripheral arterial occlusive disease.Angiology. 2000; 51: 189–196.

    Article  PubMed  CAS  Google Scholar 

  7. Nygard O, Nordrehaug JE, Refsum H, et al. Plasma homocysteine levels and mortality in patients with coronary artery disease.N Engl J Med. 1997; 337: 230–236.

    Article  PubMed  CAS  Google Scholar 

Addendum References APC Resistance and FV Leiden

  1. Dahlback B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C.Proc Natl Acad Sci USA. 1993; 90: 1004–1008.

    Article  PubMed  CAS  Google Scholar 

  2. Griffin JH, Evatt B, Wideman C, Fernandez JA. Anticoagulant protein C pathway defective in majority of thrombophilic patients.Blood. 1993; 82: 1989–1993.

    PubMed  CAS  Google Scholar 

  3. Wasserman LM, Edson JR, Key NS, Chibbar R, McGlennen RC. Detection of the Factor V Leiden mutation.Am J Clin Pathol. 1997; 108: 427–433.

    PubMed  CAS  Google Scholar 

  4. Ruiz-Arguelles GJ, Garces-Eisele J, Alarcon-Segovia D, Ruiz-Arguelles A. Activated protein C resistance phenotype and genotype in patients with primary antiphospholipid syndrome.Blood Coagul Fibrinolysis. 1996; 7: 344–348.

    Article  PubMed  CAS  Google Scholar 

  5. Press RD, Liu XY, Beamer N, Coull BM. Ischemic stroke in the elderly: role of the common Factor V mutation causing resistance to activated protein C.Stroke. 1996; 27: 44–48.

    PubMed  CAS  Google Scholar 

  6. Fisher M, Fernandez JA, Ameriso SF, Xie D, Gruber A. Activated protein C resistance in ischemic stroke not due to Factor V arginine 506-gulatamine mutation.Stroke. 1996; 27: 1163–1166.

    PubMed  CAS  Google Scholar 

  7. Bertina RM. Laboratory diagnosis of resistance to activated protein C (APC resistance).Thromb Haemost. 1997; 78: 478–482.

    PubMed  CAS  Google Scholar 

  8. Dahlback B. Resistance to activated protein C caused by the Factor V R 506 Q mutation is a common risk factor for venous thrombosis.Thromb Haemost. 1997; 78: 483–488.

    PubMed  CAS  Google Scholar 

  9. Brandt JT, Barna LK, Triplett DA. Laboratory identification of lupus anticoagulants: results of the Second International Workshop for Identification of Lupus Anticoagulants.Thromb Haemost. 1995; 74: 1597–1603.

    PubMed  CAS  Google Scholar 

  10. Wilson WA, Gharavi AE, Koike T, et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop.Arthritis Rheum. 1999; 42: 1309–1311.

    Article  PubMed  CAS  Google Scholar 

Addendum References Lupus Anticoagulant, Antiphospholipid Syndrome

  1. Esmon NL, Smirnov MD, Esmon CT. Thrombogenic mechanisms of antiphospholipid antibodies.Thromb Haemost. 1997; 78: 79–82.

    PubMed  CAS  Google Scholar 

  2. Galli M, Finazzi G, Barbui T. Antiphosplipid antibodies: predictive value of laboratory tests.Thromb Haemost. 1997; 78: 75–78.

    PubMed  CAS  Google Scholar 

  3. Galli M, Dlott J, Norbis F, et al. Lupus anticoagulants and thrombosis: clinical association of different coagulation and immunologic tests.Thromb Haemost. 2000; 84: 1012–1016.

    PubMed  CAS  Google Scholar 

  4. Levine JS, Branch DW, Rauch J. Medical progress: the antiphospholipid syndrome [review article].N Engl J Med. 2002; 436: 752–763.

    Article  Google Scholar 

  5. Cronin ME, Biwas RM, Van Der Straeton C, Fleisher TA, Klippel JH. IgG and IgM anticardiolipin antibodies in patients with lupus with anticardiolipin antibody associated clinical syndromes.J Rheumatol. 1998; 15: 795–798.

    Google Scholar 

  6. Triplett DA. Protean clinical presentation of antiphospholipid-protein antibodies (APA).Thromb Haemost. 1995; 74: 329–337.

    PubMed  CAS  Google Scholar 

  7. Forastiero R, Martinuzzo M, Pombo G, Puente D, Rossi A. A prospective study of antibodies to beta2 glycoprotein 1 and prothrombin, and risk of thrombosis.J Thromb Haemost. 2005; 3: 1231–1238.

    Article  PubMed  CAS  Google Scholar 

  8. Zoghlami-Rintelen C, Vormittag R, Sailer T, et al. The presence of IgG antibodies against beta2-glycoprotein 1 predicts the risk of thrombosis in patients with the lupus anticoagulant.J Thromb Haemost. 2005; 3: 1160–1165.

    Article  PubMed  CAS  Google Scholar 

  9. Martinelli I. Risk factors in venous thrombosis.Thromb Haemost. 2001; 86: 395–403.

    PubMed  CAS  Google Scholar 

  10. Triplett DA. Thrombophilia: laboratory evaluation.AACC Clinical Laboratory News. 2002; 28: 12–13.

    Google Scholar 

  11. Rodeghiero F, Tosetto A. The epidemiology of inherited thrombophilia: the Vita Project.Thromb Haemost. 1997; 78: 634–636.

    Google Scholar 

  12. Copper DN, Tuddenham EGH. Molecular genetics of familial venous thrombosis.Br Med Bull. 1994; 50: 833–850.

    Google Scholar 

  13. Seligsohn U, Zivelin A. Thrombophilia as a multigenic disorder.Thromb Haemost. 1997; 78: 297–301.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobrano, A., Blanchard, K., Rock, W. et al. Assessing thrombosis risk in patients with idiopathic, diabetic, and postsurgical gastroparesis. Adv Therapy 23, 750–768 (2006). https://doi.org/10.1007/BF02850315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02850315

Keywords

Navigation