Skip to main content
Log in

Absolute space-time measurements and gravitation

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

A method of direct («absolute») space-time measurements by means of free trajectories is proposed, and its application to general relativity is discussed. Only the existence and order of the intersections of trajectories are used. Top speed is defined independently at all space-time points and for all pairs of bodies. The ratios of (infinite) oscillation numbers of photons (top-speed particles) provide all the means for geometry: topology, differentiable manifold structure etc. Metric is replaced with these ratios in that a correspondence of affine parameters on different null geodesics can be obtained. So, one is able to define an absolute integration and to construct the Green’s functional demanding the field-determining path integral to be finite and expressed solely via oscillation numbers. In particular, the simple geometric structure and immediate physical meaning of the so-called «tail term» become evident in connection with Huygens’ principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robb A. A.,A Theory of Time and Space (Cambridge University Press, Cambridge) 1914.

    Google Scholar 

  2. Robb A. A.,Geometry of Time and Space (Cambridge University Press, Cambridge) 1936.

    Google Scholar 

  3. Misner C. W., Thorn K. S. andWheeler J. A.,Gravitation (Freeman W. H., San Francisco) 1970.

    Google Scholar 

  4. Synge J. L.,Relativity; The General Theory (North-Holland Publishing Co., Amsterdam), 1960.

    MATH  Google Scholar 

  5. Marzke R. F. andWheeler J. A., inGravitation and Relativity, edited byH.-Y. Chin andW. F. Hoffman (New York, N.Y.) 1964.

  6. Ehlers J., Pirani F. A. E. andShild A., inGeneral Relativity, edited by O’Raifertaigh (Oxford University Press), 1972.

  7. Tselnik F. A., preprint N89-166, Institute of Nuclear Physics, Novosibirsk, 1989.

  8. Tselnik F. A.,Sov. Phys. Dokl.,34 (1989) 634.

    MathSciNet  ADS  Google Scholar 

  9. Lynden-Bell D.,Mon. Not. R. Astron. Soc.,135 (1967) 413.

    Article  ADS  Google Scholar 

  10. Sciama D. W., Waylen P. C. andGilman R. C.,Phys. Rev.,187 (1969) 1762.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Friedlander F. G.,The Wave Equation on a Curved Space-Time (Cambridge University Press, Cambridge) 1975.

    MATH  Google Scholar 

  12. Courant R. andHilbert D.,Methods of Mathematical Physics, Vol. II (Interscience, New York, N.Y.) 1962.

    MATH  Google Scholar 

  13. Cel’nik F. A.,Sov. Math. Dokl.,9 (1968) 1151.

    Google Scholar 

  14. Zeeman E. C.,Topology,6 (1967) 161.

    Article  MATH  Google Scholar 

  15. Hawking S. W., King A. R. andMcCarthy P. J.,J. Math. Phys.,17 (1976) 174.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Fullwood D. T.,J. Math. Phys.,33 (1992) 2232 and references therein.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tselnik, F. Absolute space-time measurements and gravitation. Il Nuovo Cimento B 110, 1435–1449 (1995). https://doi.org/10.1007/BF02849842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02849842

PACS

PACS

Navigation