American Potato Journal

, Volume 73, Issue 10, pp 483–494 | Cite as

A mechanism for low temperature induced sugar accumulation in stored potato tubers: The potential role of the alternative pathway and invertase

  • Patricia M. Duplessis
  • Alejandro G. Marangoni
  • Rickey Y. Yada
News & Reviews


The accumulation of reducing sugars in stored potato tubers is of significant commercial importance because of its effect on processing quality. The process by which the accumulation of sugars occurs involves the interaction of many metabolic pathways and is yet to be fully described. Low temperature conditions result in an accumulation of ATP in potato tissue. Published evidence suggests that low temperature activation of the alternative pathway (cyanide resistant respiration) leads to decreased ATP levels and simultaneous increases in sucrose concentrations. This sucrose becomes the substrate for vacuolar acid invertase resulting in the accumulation of reducing sugars. Inhibition of the alternative pathway results in decreased sugar accumulation thereby minimizing the sucrose available to the acid invertase and the subsequent reducing sugar accumulation. Control of the alternative pathway on its own, or in combination with acid invertase activity, may provide insight into the phenomenon of low temperature sweetening in stored potato tubers.

Additional Key Words

Cyanide resistant respiration reducing sugars sucrose low temperature sweetening 


La acumulación de azúcares reductores en los tubérculos de papa almacenados tiene una importancia comercial significativa por su efecto en la calidad de procesamiento. El proceso por el cual ocurre la acumulación de azúcares involucra la interacción de muchas vías metabólicas y todavía falta describirlo en su totalidad. Las condiciones de baja temperatura dan como resultado la acumulación del ATP en el tejido de papa. Las evidencias publicadas sugieren que la activación de la vía alternativa (respiratión resistente al cianuro) por bajas temperaturas disminuye los niveles de ATP y simultáneamente incrementa las concentraciones de sucrosa. Esta sucrosa se convierte en el sustrato de la invertasa ácida vacuolar que origina la acumulación de azúcares reductores. La inhibición de la vía alternativa disminmulación la acumulación de los azúcares y de esta mariera minimiza la scurosa disponible para la invertasa ácida y la subsecuente acumulación de azúcares reductores. El control de la vía alternativa sola o en combinación con la actividad de la invertasa ácida puede proporcionar informatión sobre fenómeno de endulzamiento por baja temperatura en los tubérculos de papa almacenados.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Amir, J., V. Kahn, and M. Unterman. 1977. Respiration. ATP level, and sugar accumulation in potato tubers during storage at 4 C. Phytochemistry 16:1495–1498.CrossRefGoogle Scholar
  2. Anderson, R. S. and E. E. Ewing. 1978. Partial purification of potato tuber invertase and its proteinaceous inhibitor. Phytochemistry 17:1077–1081.CrossRefGoogle Scholar
  3. Avery, H. E. 1974. Basic Reaction Kinetics and Mechanisms. The Macmillan Press Ltd., Hong Kong. p. 174.Google Scholar
  4. Bryce, J. H. and S. A. Hill. 1993. Energy production in plant cells, p. 1–26.In: P. J. Lea and R. C. Lee-good (Eds), Plant Biochemistry and Molecular Biology. John Wiley and Sons Ltd., West Sussex, England.Google Scholar
  5. Burton, W. G. 1969. The sugar balance in some British potato varieties during storage. II. The effects of tuber age, previous storage temperature, and intermittent refrigeration upon low-temperature sweetening. Eur Potato J 12:81–95.CrossRefGoogle Scholar
  6. Burton, W. G. and A. R. Wilson. 1978. The sugar content and sprout growth of tubers of potato cultivar Record, grown in different localities, when stored at 10, 2 and 20 C. Potato Res 21:145–162.CrossRefGoogle Scholar
  7. Davies, H. V. and R. Viola. 1992. Regulation of sugar accumulation in stored potato tubers. Postharvest News and Information 3(5):97N-100N.Google Scholar
  8. Davies, H. V. and R. Viola. 1994. Control of sugar balance in potato tubers. p. 69–80.In: W.R. Belknap, M. E. Vayda and W. D. Park (Eds), The Molecular and Cellular Biology of the Potato, Second Edition. CAB International, Wallingford, UK.Google Scholar
  9. Elthon, T. E. and L. Mclntosh. 1987. Identification of the alternative terminal oxidase of higher plant mitochondria. Proc Nat’l Acad Sci USA 84:8399–8403.CrossRefGoogle Scholar
  10. Hanes, C. S. and J. Barker. 1931. The effects of cyanide on the respiration and sugar content of the potato at 15 C. Proc R Soc London Ser B 108:95–118.CrossRefGoogle Scholar
  11. Hiser, C., P. Kaprenov, and L. McIntosh. 1996. Genetic modification of respiratory capacity in potato. Plant Physiol 110:277–286.PubMedCrossRefGoogle Scholar
  12. Horton, D. 1980. The Potato as a Food Crop for the Developing World. International Potato Centre. Lima, Peru.Google Scholar
  13. Isherwood, F.A. 1973. Starch-sugar interconversion inSolaum tuberosum. Phytochemistry 12:2579–2591.CrossRefGoogle Scholar
  14. Isla, M. I., M. A. Vattuone, and A. R. Sampietro. 1991a. Modulation of potato invertase activity by fructose. Phytochemistry 30:423426.Google Scholar
  15. Isla, M. I., M. A. Vattuone, and A. R. Sampietro. 1991b. Proteinaceous inhibitor fromSolanum tuberosum invertase. Phytochemistry 30:739–743.CrossRefGoogle Scholar
  16. Isla, M. I., D. P. Leal, M. A. Vattuone, and A. R. Sampietro. 1992. Cellular localization of the invertase, proteinaceous inhibitor and lectin from potato tubers. Phytochemistry 31:1115–1118.CrossRefGoogle Scholar
  17. Kumar, G. N. M. and N. R. Knowles. 1993. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed tubers. Plant Physiol 102:115–124.PubMedGoogle Scholar
  18. Lambers, H. 1982. Cyanide-resistant respiration: a non-phosphorylating electron transport pathway acting as an energy overflow. Physiol Plant 55:478–485.CrossRefGoogle Scholar
  19. Lance, C. 1981. Cyanide-insensitive respiration in fruits and vegetables.In: J. Friend and M. J. C. Rhodes (Eds), Recent Advances in the Biochemistry of Fruit and Vegetables. p. 63–87. Academic Press, New York, New York.Google Scholar
  20. Laties, G. G. 1982. The cyanide-resistant, alternative path in higher plant respiration. Ann Rev Plant Physiol 33:519–555.CrossRefGoogle Scholar
  21. Marangoni, A. G., P. M. Duplessis, R. W. Lencki, and R. Y. Yada. 1996a. Low temperature stress induces transient oscillations in sucrose metabolism inSolanum tuberosum. Biophys Chem (In press).Google Scholar
  22. Marangoni, A. G., T. Palma, and D. W. Stanley. 1996b. Membrane effects in postharvest physiology. Postharvest Biology and Technology 7:193–217.CrossRefGoogle Scholar
  23. Pressey, R. 1966. Separation and properties of potato invertase and invertase inhibitor. Arch Biochem Biophys 113:667–674.PubMedCrossRefGoogle Scholar
  24. Pressey, R. 1967. Invertase inhibitor from potatoes: purification, characterization, and reactivity with plant invertases. Plant Physiol 42:1780–1786.PubMedGoogle Scholar
  25. Pressey, R. 1969. Role of invertase in the accumulation of sugars in cold-stored potatoes. Am Potato J 46:291–297.Google Scholar
  26. Pressey, R. 1970. Changes in sucrose synthetase and sucrose phosphate synthetase activities during storage of potatoes. Am Potato J 47:245–251.Google Scholar
  27. Pressey, R. and R. Shaw. 1966. Effect of temperature on invertase, invertase inhibitor, and sugars in potato tubers. Plant Physiol 41:1657–1661.PubMedGoogle Scholar
  28. Purvis, A. C. and R. L. Shewfelt. 1993. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol Plant 88:712–718.CrossRefGoogle Scholar
  29. Renz, A., L. Merlo, and M. Stitt. 1993. Partial purification from potato tubers of three fructokinases and three hexokinases which show differing organ and developmental specificity. Planta 190:156–165.Google Scholar
  30. Schwimmer, S., R. U. Makower, and E. S. Rorem. 1961. Invertase and invertase inhibitor in potato. Plant Physiology 36:313–316.PubMedGoogle Scholar
  31. Sherman, M. and E. E. Ewing. 1982. Temperature, cyanide, and oxygen effects on the respiration, chip color, sugars, and organic acids of stored tubers. Am Potato J 59:165–178.Google Scholar
  32. Solomos, T. and G. G. Laties. 1975. The mechanism of ethylene and cyanide action in triggering the rise in respiration in potato tubers. Plant Physiology 55:73–78.PubMedGoogle Scholar
  33. Sowokinos, J. R. 1990a. Effect of stress and senescence on carbon partitioning in stored potatoes. Am Potato J 67:849–857.Google Scholar
  34. Sowokinos, J. R. 1994. Post-harvest regulation of sucrose accumulation in transgenic potatoes: role and properties of potato tuber UDP-glucose pyrophosphorylase. p. 81–106.In: W. R. Belknap, M. E. Vayda and W. D. Park (Eds), The Molecular and Cellular Biology of the Potato, Second Edition. CAB International, Wallingford, UKGoogle Scholar
  35. Wismer, W.V. 1995. Sugar accumulation and membrane related changes in two cultivars of potato tubers stored at low temperature. Ph.D thesis. University of Guelph, Guelph, ON.Google Scholar
  36. Zrenner, R., K. Schuler, and U. Sonnewald. 1996. Soluble acid invertase determines the hexose-tosucrose ratio in cold stored potato tubers. Planta 198:246–252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • Patricia M. Duplessis
    • 1
  • Alejandro G. Marangoni
    • 1
  • Rickey Y. Yada
    • 1
  1. 1.Department of Food ScienceUniversity of GuelphGuelphCanada

Personalised recommendations