Skip to main content
Log in

Detection and identification of fluorescent compounds in potato tuber tissue with corky patch syndrome

  • Published:
American Potato Journal Aims and scope Submit manuscript


A corky patch syndrome that effects potato tuber tissue may be a later manifestation of pink eye disease of potato although an actual cause and effect relationship between the two diseases has not been firmly established. The causal agent for pink eye of potato is unknown but the disease has been associated with the fungiVerticillium andRhizoctonia and the bacteriumPseudomonas fluorescens. Pink eye and corky patch symptoms on the periderm of affected tubers are accompanied by a band of tissue beneath that is intensely auto-fluorescent when viewed under ultraviolet illumination. Studies to determine the cause of the fluorescent reaction were performed using HPLC and a fluorescence monitor. Three phenylpropanoid compounds, chlorogenic acid, esculin and scopoletin, were found to be involved. It appears that these compounds are produced by tuber tissues in response to pathogen invasion and also as part of the wound healing process. Tissues with corky patch syndrome, silver scurf and root-knot nematode contained high concentrations of chlorogenic acid and esculin and low concentrations of scopoletin. Tissues infected with dry rot were visibly less fluorescent, and contained less chlorogenic acid and esculin, and no detectable level of scopoletin.


Un sindrome de “parche corchoso” que afecta al tejido de los tubérculos de papa puede ser la última manifestación de la enfermedad “ojo rosado” de la papa aun cuando una verdadera relación causa-efecto entre las dos enfermedades no ha sido firmemente establecida. El agente causal del “ojo rosado”de la papa no es conocido, pero la enfermedad ha sido asociada con los hongosVerticillium yRhizoctonia y la bacteriaPseudomonas fluorescens. Los síntomas del ojo rosado y del parche corchoso sobre el peridermo de los tubérculos afectados están acompañados por una banda de tejido basai que es intensamente auto-fluorescente cuando es observado bajo iluminación ultravioleta. Se llevaron acabo estudios para determinar la causa de la reaction fluorescente utilizando HPLC y un monitor de fluorescencia. Se encontró que estaban involucrados tres compuestos del fenilpropanoide, ácido clorogénico, esculina y escopoletina. Parece ser que estos compuestos son producidos por los tejidos del tubérculo como respuesta a la invasion del patógeno y también como parte del proceso de cicatrization de heridas. Los tejidos con el sindrome de parche corchoso, costra plateada y nematodo del nodulo de la raíz contienen altas concentraciones de ácido clorogénico y esculina y bajas concentraciones de escopoletina. Los tejidos infectados con pudrición seca fueron visiblemente menos fluorescentes y contenían menos ácido chlorogénico y esculina y un nivel no detectable de escopoletina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Albersheim, P., T.M. Jones and P.D. English. 1969. Biochemistry of the cell wall in relation to infective processes. Annu Rev Phytopath 7:171–194.

    Article  CAS  Google Scholar 

  2. Bauer, H. and D. Treutter. 1990. Identification of pelargonium genotypes by phenolic ‘fingerprints’. 1. Separation and identification of phenolic compounds in leaves. Gartenbauwissenschaft 55:113–118.

    CAS  Google Scholar 

  3. Bostock, R.M. and B.A. Stermer. 1989. Perspectives on wound healing in resistance to pathogens. Annu Rev Phytopathol 27:343–371.

    Article  Google Scholar 

  4. Cetas, R.C. 1971. Lack of correlation between pinkeye andVerticillium wilt susceptibility among potato cultivars and breeding lines. Am Potato J 48:306.

    Google Scholar 

  5. Clarke, D.D. 1973. The accumulation of scopolin in potato tissue in response to infection. Physiol Plant Pathol 3:347–358.

    Article  CAS  Google Scholar 

  6. Cohen, Y. 1975. Fluorescence microscopy and related enzyme activity of sunflower plants infected byPlasmopara halstedii. Physiol Plant Pathol 7:9–15.

    CAS  Google Scholar 

  7. Craft, C.C. and W.V. Audia. 1962. Phenolic substances associated with wound-barrier formation in vegetables. Bot Gaz 123:211–219.

    Article  CAS  Google Scholar 

  8. Cuppels, D.A. and A. Kelman. 1980. Isolation of pectolytic fluorescent pseudomonads from soil and potatoes. Phytopathology 70(11):1110–1115.

    Google Scholar 

  9. Dhingra, O.D. and J.B. Sinclair. 1985. Basic Plant Pathology Methods. CRC Press, Inc., Boca Raton, Florida. 355 pp.

    Google Scholar 

  10. Dixon, R.A. 1986. The phytoalexin response elicitation, signalling and control of host gene expression. Biol Rev Camb Philos Soc 61:239–291.

    Article  CAS  Google Scholar 

  11. Farkas, G.L. and Z. Kiraly. 1962. Role of phenolic compounds in the physiology of plant diseases and disease resistance. Phytopathol Z 44:105–150.

    CAS  Google Scholar 

  12. Folsom, D., O.L. Wyman and E. Westin. 1951. Potato Verticillium wilt. Maine Agric Ext Sta Circ #265.

  13. Folsom, D. and B.A. Friedman. 1959.Pseudomonas fluorescens in relation to certain diseases of potato tubers in Maine. Am Potato J 36:90–97.

    Google Scholar 

  14. Frank, J.A., R.E. Webb and D.R. Wilson. 1973. The relationship betweenVerticillium wilt and the pinkeye disease of potato. Am Potato J 50:431–438.

    Google Scholar 

  15. Friend, J. 1979. Phenolic substances and plant disease. Pages 557–588In: Recent Advances in Phytochemistry. Vol 12. Biochemistry of Plant Phenolics. T. Swain, J.B. Harborne and C.F. Van Sumere, eds. Plenum Press, New York.

    Google Scholar 

  16. Friend, J., S.B. Reynolds and M.A. Aveyard. 1973. Phenylalanine ammonia lyase, chlorogenic acid and lignin in potato tuber tissue inoculated withPhytophthora infestans. Physiol Plant Pathol 3:495–507.

    CAS  Google Scholar 

  17. Hooker, W.J. 1981. Compendium of potato diseases. American Phytopathological Society, St. Paul, MN 125 pp.

    Google Scholar 

  18. Hughes, J.C. and T. Swain. 1960. Scopolin production in potato tubers infected withPhytophthora infestans. Phytopathology 50:398–400.

    CAS  Google Scholar 

  19. Kamara, A.E.M. 1972. Role of phenolics and phenolic oxidizing enzymes in the development of potato silver scurf. Ph.D. Thesis, North Dakota State University, Fargo, ND. 108 pp.

    Google Scholar 

  20. Kosuge, T. 1969. The role of phenolics in host response to infection. Annu Rev Phytopathol 7:195–222.

    Article  CAS  Google Scholar 

  21. Kuc, J., R.E. Henze, AJ. Ullstrup and F.W. Quackenbush. 1956. Chlorogenic and caffeic acids as fungistatic agents produced by potato in response to inoculation withHelminthosporium carbonum. J Am Chem Soc 78:3123–3125.

    Article  CAS  Google Scholar 

  22. Lawton, M.A. and C.J. Lamb. 1987. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol 7:335–341.

    PubMed  CAS  Google Scholar 

  23. Lipetz, J. 1970. Wound-healing in higher plants. Int Rev Cytol 27:1–28.

    CAS  Google Scholar 

  24. Lyon, G.D. 1989. The biochemical basis of resistance of potatoes to soft rotErwinia spp.-a review. Plant Pathol 38:313–339.

    Article  CAS  Google Scholar 

  25. Lyon, G.D. and F.M. McGill. 1988. Inhibition of growthof Erwinia carotovora in vitro by phenolics. Potato Res 31:461–4467.

    Article  CAS  Google Scholar 

  26. Malmberg, A. and O. Theander. 1984. Analysis of cholorogenic acid, coumarins and feruloylputrescine in different parts of potato tubers infected withPhoma. Swed J Agric Res 14:63–70.

    CAS  Google Scholar 

  27. Matern, U. and R.E. Kneusel. 1988. Phenolic compounds in plant disease resistance. Phytoparasitica 16:153–170.

    CAS  Google Scholar 

  28. Nolte, P., G.A. Secor, N.C. Gudmestad and P.J. Henningson. 1989. Identification and characterization of fluorescent compounds in potato tubers with symptoms of pinkeye disease. Am Potato J 66:536 (Abstr.).

    Google Scholar 

  29. Nolte, P., G.A. Secor, N.C. Gudmestad and P.J. Henningson. 1990. Detection and identification of fluorescent compounds in potato tubers with symptoms of pinkeye disease. Proc 11th Triennial Con Eur Assoc Potato Res 11:429 (Abstr.).

    Google Scholar 

  30. Secor, G.A. 1988. Proceedings of the conference on pink eye disease of potatoes. Am Potato J 65:506–507.

    Google Scholar 

  31. Secor, G.A. and D. Rouse. 1992. Proceedings of second conference on pinkeye of potatoes. Am Potato J 69:149–154.

    Google Scholar 

  32. Tal, B. and D.J. Robeson. 1986. The metabolism of sunflower phytoalexins ayapin and scopoletin. Plant Physiol 82:167–172.

    Article  PubMed  CAS  Google Scholar 

  33. VanEtten, H.D., D.E. Matthews and P.S. Matthews. 1989. Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopathol 27:143–164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Idaho Agricultural Experiment Station Manuscript #92754.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolte, P., Secor, G.A., Gudmestad, N.C. et al. Detection and identification of fluorescent compounds in potato tuber tissue with corky patch syndrome. American Potato Journal 70, 649–666 (1993).

Download citation

  • Accepted:

  • Issue Date:

  • DOI:

Additional Key Words