Advertisement

Pramana

, Volume 16, Issue 3, pp 173–199 | Cite as

The ‘time of occurrence’ in quantum mechanics

  • M D Srinivas
  • R Vijayalakshmi
Quantum Mechanics

Abstract

Apart from serving as a parameter in describing the evolution of a system, time appears also as an observable property of a system in experiments where one measures ‘the time of occurrence’ of an event associated with the system. However, while the observables normally encountered in quantum theory (and characterized by self-adjoint operators or projection-valued measures) correspond to instantaneous measurements, a time of occurrence measurement involves continuous observations being performed on the system to monitor when the event occurs. It is argued that a time of occurrence observable should be represented by a positive-operator-valued measure on the interval over which the experiment is carried out. It is shown that while the requirement of time-translation invariance and the spectral condition rule out the possibility of a self-adjoint time operator (Pauli’s theorem), they do allow for time of occurrence observables to be represented by suitable positive-operator-valued measures. It is also shown that the uncertainty in the time of occurrence of an event satisfies the time-energy uncertainty relation as a consequence of the time-translation invariance, only if the time of occurrence experiment is performed on the entire time axis.

Keywords

Time operator spectral condition Pauli’s theorem time of occurrence of an event continuous measurements positive-operator-valued measures timeenergy uncertainty relation time of arrival of photons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharanov Y and Bohm D 1961Phys. Rev. 122 1649CrossRefADSMathSciNetGoogle Scholar
  2. Aharanov Y and Bohm D 1964Phys. Rev. B134 1417CrossRefADSGoogle Scholar
  3. Akhiezer N I and Glazman I M 1961Theory of linear operators in Hilbert space Vol. II (New York: Ungar)zbMATHGoogle Scholar
  4. Allock G R 1969Ann. Phys. 53 253CrossRefADSGoogle Scholar
  5. Amrein W O, Jauch J M and Sinha K B 1977Scattering theory in quantum mechanics (New York: Benjamin)zbMATHGoogle Scholar
  6. Bauer M and Mello P A 1978Ann. Phys. 111 38CrossRefADSGoogle Scholar
  7. Benioff P 1972J. Math. Phys. 13 1347CrossRefADSMathSciNetGoogle Scholar
  8. Bohr N 1928Nature (London) 121 580CrossRefzbMATHADSGoogle Scholar
  9. Borchers H J 1967Commun. Math. Phys. 4 315zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. Cooper J L B 1947Ann. Math. 48 827CrossRefGoogle Scholar
  11. Davies E B 1969Commun. Math. Phys. 15 277zbMATHCrossRefADSGoogle Scholar
  12. Davies E B 1975Helv. Phys. Acta 48 365MathSciNetGoogle Scholar
  13. Davies E B 1976Quantum theory of open systems (New York: Academic Press)zbMATHGoogle Scholar
  14. Emch G G 1972Algebraic methods in statistical mechanics and quantum field theory (New York: Wiley Interscience)zbMATHGoogle Scholar
  15. Engelmann F and Fick E 1959Suppl. Nuovo. Cim. 12 63zbMATHCrossRefMathSciNetGoogle Scholar
  16. Engelmann F and Fick E 1964Z. Phys. 178 551CrossRefADSGoogle Scholar
  17. Fock V A 1962Sov. Phys. JETP 15 784zbMATHGoogle Scholar
  18. Fock V A 1966Sov. Phys. Usp. 8 628CrossRefADSGoogle Scholar
  19. Foias C, Geher L and Nagy BSz 1960Acta Sci. Math. (Szeged) 21 78zbMATHMathSciNetGoogle Scholar
  20. Friedman C N 1976Ann. Phys. 98 87CrossRefADSGoogle Scholar
  21. Gnanapragasam B and Srinivas M D 1979Pramana 12 699ADSGoogle Scholar
  22. Haba Z and Novicki A A 1976Phys. Rev. D13 523ADSGoogle Scholar
  23. Hegerfeldt G C 1974Phys. Rev. D10 3320ADSGoogle Scholar
  24. Hegerfeldt G C and Ruijsenaars 1980 Remarks on causality localization and spreading of wave packets (Princeton Univ. Preprint)Google Scholar
  25. Heisenberg W 1927Z. Phys. 43 172CrossRefADSGoogle Scholar
  26. Helstrom C W 1974Int. J. Theor. Phys. 11 357CrossRefMathSciNetGoogle Scholar
  27. Holevo A S 1978Rep. Math. Phys. 13 379zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. Houtappel R M F, VanDam H and Wigner E P 1965Rev. Mod. Phys. 37 595CrossRefADSMathSciNetGoogle Scholar
  29. Jammer M 1974The philosophy of quantum mechanics (New York: John Wiley)Google Scholar
  30. Jauch J M 1968Foundations of quantum mechanics (Reading: Addison-Wesley)zbMATHGoogle Scholar
  31. Kijowski J 1974Rep. Math. Phys. 6 361CrossRefMathSciNetADSGoogle Scholar
  32. Kraus K 1980 A note on zeno’s paradox in quantum theory (Univ. of Texas at Austin Preprint).Google Scholar
  33. Landau L D and Peirls R F 1931Z. Phys. 69 56zbMATHCrossRefADSGoogle Scholar
  34. Mackey G W 1949Duke Math. J. 16 313zbMATHCrossRefMathSciNetGoogle Scholar
  35. Mandelstam L and Tamm I G 1945J. Phys. USSR 9 249MathSciNetGoogle Scholar
  36. Misra B and Sudarshan E C G 1977J. Math. Phys. 18 756CrossRefADSMathSciNetGoogle Scholar
  37. Mollow B R 1968Phys. Rev. 168 1896CrossRefADSGoogle Scholar
  38. Olkhovsky N S, Recami E and Gerasimchuk A I 1974Nuovo. Cim. A22 263MathSciNetCrossRefADSGoogle Scholar
  39. Paul H 1962Ann. Phys. 9 252CrossRefGoogle Scholar
  40. Pauli W 1933 Die allgemeinen Prinzipien der Wellenmechanik inHandbuch der Physik eds. Geiger H and Scheel K Vol. 24 part 1 (Berlin: Springer Verlag)Google Scholar
  41. Perez J F and Wilde I F 1977Phys. Rev. D16 315ADSGoogle Scholar
  42. Putnam C R 1967Commutation properties of Hilbert space operators and related topics (Berlin: Springer)Google Scholar
  43. Razavy M 1967Ann. J. Phys. 35 955ADSGoogle Scholar
  44. Razavy M 1969Nuovo. Cim. B63 271CrossRefADSGoogle Scholar
  45. Scully M O and Lamb W E 1969Phys. Rev. 179 368CrossRefADSGoogle Scholar
  46. Skagerstam B S 1976Int. J. Theor. Phys. 15 213CrossRefMathSciNetGoogle Scholar
  47. Srinivas M D 1975J. Math. Phys. 16 1672CrossRefADSMathSciNetGoogle Scholar
  48. Srinivas M D and Davies E B 1981Opt. Acta (in press)Google Scholar
  49. Streater R F and Wightman A S 1964PCT spin statistics and all that (New York: Benjamin)zbMATHGoogle Scholar
  50. Von Neumann J 1931Ann. Math. 104 570zbMATHCrossRefGoogle Scholar
  51. Von Neumann J 1955Mathematical foundations of quantum mechanics (Princeton: University Press)zbMATHGoogle Scholar
  52. Wightman A S 1962Rev. Mod. Phys. 34 845CrossRefADSMathSciNetGoogle Scholar
  53. Wigner E P 1972 inAspects of quantum theory, eds A Salam and E P Wigner (London: Cambridge Univ. Press)Google Scholar

Copyright information

© the Indian Academy of Sciences 1981

Authors and Affiliations

  • M D Srinivas
    • 1
  • R Vijayalakshmi
    • 1
    • 2
  1. 1.Department of Theoretical PhysicsUniversity of Madras, Guindy CampusMadrasIndia
  2. 2.E. D. P. DepartmentBharat Petroleum Corporation Limited, Ballard EstateBombayIndia

Personalised recommendations