Pramana

, Volume 45, Issue 1, pp 1–17 | Cite as

Diffusing wave spectroscopy of dense colloids: Liquid, crystal and glassy states

  • Subrata Sanyal
  • Ajay K Sood
Article

Abstract

Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115µm and 0.089µm results in freezing into a crystalline phase at volume fractionφ of 0.1 and into a glassy state atφ=0.2. The functional form of the field autocorrelation functiong(1)(t) for the binary fluid phase is fitted to exp[−γ(6k02Defft)1/2] wherek0 is the magnitude of the incident light wavevector andγ is a parameter inversely proportional to the photon transport mean free pathl*. TheDeff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingDeff was computed using the Mie theory. In the solid (crystal or glass) phase, theg(1)(t) is fitted (only with a moderate success) to exp[−γ(6k02W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameterγ for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.

Keywords

Colloids dynamic light scattering crystal and glass transitions 

PACS Nos

82.70 64.70 42.20 05.40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For a review, see A K Sood, inSolid State Physics, edited by H Ehrenreich and D Turnbull (Academic, New York, 1991) Vol. 45, p. 1Google Scholar
  2. [2]
    E B Sirota, H D Ou-Yang, S K Sinha, P M Chaikin, J D Axe and Y Fujji,Phys. Rev. Lett. 62, 1524 (1989)CrossRefADSGoogle Scholar
  3. [3]
    P N Pusey, W van Megen, P Bartlett, B J Ackerson, J G Rarity and S M Underwood,Phys. Rev. Lett. 63, 2753 (1989)CrossRefADSGoogle Scholar
  4. [4]
    W van Megen and P N Pusey,Phys. Rev. A43, 5429 (1991)ADSGoogle Scholar
  5. [4]a
    W van Megen, S M Underwood and P N Pusey,Phys. Rev. Lett. 67, 1586 (1991)CrossRefADSGoogle Scholar
  6. [4]b
    W van Megen and S M Underwood,Phys. Rev. E47, 248 (1993)ADSGoogle Scholar
  7. [5]
    P N Pusey and W van Megen,Nature (London) 320, 340 (1986)CrossRefADSGoogle Scholar
  8. [5]a
    P N Pusey and W van Megen,Phys. Rev. Lett. 69, 2083 (1987)CrossRefADSGoogle Scholar
  9. [5]b
    S E Paulin and B J Ackerson,Phys. Rev. Lett. 64, 2663 (1990)CrossRefADSGoogle Scholar
  10. [5]c
    P N Pusey,J. Phys. (Paris)48, 709 (1987)Google Scholar
  11. [5]d
    W van Megen and S M Underwood,Langmuir 6, 35 (1990)CrossRefGoogle Scholar
  12. [6]
    S Yoshimura and S Hachisu,Prog. Colloid Polym. Sci. 68, 59 (1983);Nature (London) 283, 188 (1980)CrossRefGoogle Scholar
  13. [7]
    S Yoshimura and S Hachisu,J. Phys. Colloq. (Paris)46, C3–115 (1985)Google Scholar
  14. [8]
    P Bartlett, R H Ottewill and P N Pusey,J. Chem. Phys. 93, 1299 (1990);Phys. Rev. Lett. 68, 3801 (1992)CrossRefADSGoogle Scholar
  15. [9]
    H M Lindsay and P M Chaikin,J. Chem. Phys. 76, 3774 (1982)CrossRefADSGoogle Scholar
  16. [10]
    R Kesavamoorthy, A K Sood, B V R Tata and A K Arora,J. Phys. C21, 4737 (1988)ADSGoogle Scholar
  17. [11]
    A Meller and J Stavans,Phys. Rev. Lett. 68, 3646 (1992)CrossRefADSGoogle Scholar
  18. [12]
    H Löwen, J P Hansen and J N Roux,Phys. Rev. A44, 1169 (1991)ADSGoogle Scholar
  19. [13]
    S Sanyal and A K Sood,Phys. Rev. E (in press); S Sanyal, Ph.D Thesis (IISc, Bangalore, India), Unpublished (1994)Google Scholar
  20. [14]
    B V R Tata and A K Arora,J. Phys. Condensed Matter 4, 7699 (1992)CrossRefADSGoogle Scholar
  21. [15]
    J F Sadoc and C N J Wagner, inGlassy metals II, edited by M Bech and H J Guntherödt, (Springer-Verlag, Berlin, 1983), p. 53Google Scholar
  22. [15]a
    M Kimura and F Yonezawa, inTopological disorder in condense matter, edited by F Yonezawa and T Ninomiya (Springer-Verlag, Berlin, 1983) p. 80Google Scholar
  23. [16]
    P N Pusey and R J A Tough, inDynamic light scattering: Applications of photon correlation spectroscopy, edited by R Pecora (Plenum, New York, 1985)Google Scholar
  24. [17]
    B J Berne and R Pecora,Dynamic light scattering (Wiley, New York, 1976)Google Scholar
  25. [18]
    For reviews on MCT, see, W Götze, inLiquids, freezing and the glass transition, Proceedings of the Les Houches Summer School, Session L1, edited by J P Hansen, D Levesque and J Zinn-Justin, (North-Holland, Amsterdam, 1991), p. 287Google Scholar
  26. [18]a
    W Götze and L Sjögren,Rep. Prog. Phys. 55, 241 (1992)CrossRefGoogle Scholar
  27. [19]
    G Maret and P E Wolf,Z. Phys. B65, 409 (1987)CrossRefADSGoogle Scholar
  28. [19]a
    M Rosenbluh, M Hoshen, I Freund, M Kaveh,Phys. Rev. Lett. 58, 2754 (1987)CrossRefADSGoogle Scholar
  29. [19]b
    I Freund, M Kaveh and M Rosenbluh,Phys. Rev. Lett. 60, 1130 (1988)CrossRefADSGoogle Scholar
  30. [20]
    M J Stephen,Phys. Rev. B37, 1 (1988)ADSMathSciNetGoogle Scholar
  31. [20]a
    A A Golubentsev,Zh. Eksp. Theor. Fiz. 86, 47 (1984);Sov. Phys. JETP 59, 26 (1984)ADSGoogle Scholar
  32. [21]
    D J Pine, D A Weitz, P M Chaikin and E Herbolzheimer,Phys. Rev. Lett. 60, 1134 (1988)CrossRefADSGoogle Scholar
  33. [22]
    D J Pine, D A Weitz, G Maret, P E Wolf, E Herbolzheimer and P M Chaikin inScattering and localization of classical waves in random media, edited by P Sheng, (World Scientific, Singapore, 1989)Google Scholar
  34. [22]a
    D J Pine, D A Weitz, J X Zhu and E Herbolzheimer,J. Phys. France 51, 2101 (1990)CrossRefGoogle Scholar
  35. [23]
    S Sanyal, A K Sood, S Ramkumar, S Ramaswamy and N Kumar,Phys. Rev. Lett. 72, 2963 (1994)CrossRefADSGoogle Scholar
  36. [24]
    P D Kaplan, A G Yodh and D J Pine,Phys. Rev. Lett. 68, 393 (1992)CrossRefADSGoogle Scholar
  37. [25]
    Y Kuga and A Ishimaru,J. Opt. Soc. Am. A8, 831 (1984)ADSGoogle Scholar
  38. [25]a
    M P van Albada and A Lagendijk,Phys. Rev. Lett. 55, 2692 (1985)CrossRefADSGoogle Scholar
  39. [25]b
    P E Wolf and G Maret,Phys. Rev. Lett. 55, 2696 (1985)CrossRefADSGoogle Scholar
  40. [25]c
    E Akkerman, P E Wolf and R Maynard,Phys. Rev. Lett. 56, 1471 (1986)CrossRefADSGoogle Scholar
  41. [26]
    A Ishimaru,Wave propagation and scattering in random media (Academic, New York, 1978), p. 29–30Google Scholar
  42. [26]a
    H C van de Hulst,Light scattering by small particles (Dover, New York, 1957, 1981), p. 121–128, 176–177Google Scholar
  43. [27]
    F C MacKintosh and S John,Phys. Rev. B40, 2383 (1989)ADSGoogle Scholar
  44. [28]
    G K Batchelor,J. Fluid Mech. 74, 1 (1976);131, 155 (1983)MATHCrossRefADSMathSciNetGoogle Scholar
  45. [29]
    N W Ashcroft and D C Langreth,Phys. Rev. 159, 500 (1967)CrossRefADSGoogle Scholar
  46. [29]a
    J M Ziman,Philos. Mag. 6, 1013 (1961)MATHCrossRefADSGoogle Scholar
  47. [30]
    S Fraden and G Maret,Phys. Rev. Lett. 65, 512 (1990)CrossRefADSGoogle Scholar
  48. [31]
    P D Kaplan, J L Rouke, A G Yodh and D J Pine,Phys. Rev. Lett. 72, 582 (1994)CrossRefADSGoogle Scholar
  49. [32]
    F C MacKintosh, J X Zhu, D J Pine and D A Weitz,Phys. Rev. B40, 9342 (1989)ADSGoogle Scholar
  50. [33]
    S Sanyalet al, unpublishedGoogle Scholar
  51. [34]
    We thank Prof. A G Yodh for providing us with the computer program to calculatel*Google Scholar
  52. [35]
    W Hess and R Klein,Adv. Phys. 32, 173 (1983) p. 181CrossRefADSMathSciNetGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1995

Authors and Affiliations

  • Subrata Sanyal
    • 1
  • Ajay K Sood
    • 1
    • 2
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations