Skip to main content
Log in

Dynamic changes of inorganic nitrogen and astaxanthin accumulation inHaematococcus pluvialis

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

This study on dynamic changes of culture color, astaxanthin and chlorophylls, inorganic N including N−NO 3 , N−NO 2 and N−NH +4 in batch culture ofHaematococcus pluvialis exposed to different additive nitrate concentration showed (1) ast/chl ratio was over 0.8 for brown and red algae, but was usually less than 0.5 for green and yellow algae; (2) N−NO 3 , in general, was unstable and decreased, except for a small unexpected increase in nitrate enriched treatment groups; (3) measurable amounts of N−NO 2 , and N−NH +4 were observed respectively with three change modes although no external nitrite and ammonia were added into the culture; (4) a non-linear correlation between ast/chl ratio (or color) changes and the levels of N−NO 3 , N−NO 2 , N−NH +4 inH. pluvialis culture; (5) up and down variation of the ast/chl ratio occurred simultaneously with a perceptible color change from yellow to brown (or red) when N−NO 3 , N−NO 2 and N−NH +4 fluctuated around 30, 5, 5, μmol/L respectively; (6) existence of three dynamic modes of N−NO 3 , N−NO 2 and N−NH +4 changes, obviously associated with initial external nitrate; (7) the key level of total inorganic N concentration regulating the above physiological changes during indoor cultivation was about 50 μmol/L; and (8) 0.5–10 mmol/L of nitrate was theoretically conducive to cell growth in batch culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon, D. I., 1949, Copper enzymes in isolated chloroplasts; polyphenol oxidase inBeta vulgaris.Plant Physiology 24:1–15.

    Article  Google Scholar 

  • Borowitzka, M., Huisman, J. M., Osboen, A., 1991. Culture of the astaxanthin-producing green algaHaematococcus pluvialis I. Effects of nutrients on growth and cell type.J. Appl. Physiol. 3:295–304.

    Google Scholar 

  • Bossiba, S., Vonshak, A., 1991. Astaxanthin accumulation in the green algaHaematococcus pluvialis.Plant cell physiol. 32(7):1077–1082.

    Google Scholar 

  • Bubrick, P., 1991. Production of astaxanthin fromHaematococcus.Bioresource Technology 38:237–239

    Article  Google Scholar 

  • Chaumont, D., Thepenier, C., 1995. Carotenoid content in growing cells ofHaematococcus pluvialis during a sunlight cycle.J. Appl. Phycol. 7:529–537.

    Article  Google Scholar 

  • Cramer, M., Myers, J., 1948. Nitrate reduction and assimilation inChlorella.J. Gen. Physiol. 32: 93–102.

    Article  Google Scholar 

  • Davies, B. H., 1976. Carotenoids. In Goodwin TW (eds.) The biochemistry of carotenoids. 38–165.

  • Donkin, P., 1976. Ketocarotenoid biosynthesis byHaematococcus lacustris.Phytochemistry 15:711–715.

    Article  Google Scholar 

  • Droop, M. R., 1954. Conditions governing haematochrome formation inHaematococcus pluvialis Flotow.Arch. Mikrobiol. 20:391–397.

    Article  Google Scholar 

  • Gao, F. M., Zhang, S. H., Wang, X. Y. et al., 1980. Determination of ammonia in seawater by hyppobromate oxidation method.Transactions of Oceanology and Limnology 4:41–46.

    Google Scholar 

  • Grung, M., Frances, M. L. D., Borowitzka, M. A. et al., 1992. Algal carotenoids 51. secondary carotenoids 2.Haematococcus pluvialis aplanospores as a source of (3s, 3s)-astaxanthin esters.J. Appl. Phycol. 4:165–171.

    Article  Google Scholar 

  • Hagen, C., Braune, W., Bjorn, L. O., 1994. Functional aspects of secondary carotenoids inHaematococcus lacustris (Volvocales). III. Action as a sunshade.J. Physcol. 30:241–248.

    Article  Google Scholar 

  • Harker, M., Tsavalos, A. J., Young, A. J., 1995. Use of response surface methodology to optimise carotenogenesis in the microalga,Haematococcus pluvialis.J. Appl. Phycol. 7:399–406.

    Article  Google Scholar 

  • Jin, C. Y., Song, L. R., Liu, Y. D., Gan, X. N., 1996. The nutrient requirement of a green algaHaematococus pluvialis sp. NB748.Act Hydrobiol. Sinca 20(3):293–297.

    Google Scholar 

  • Kabayashi, M., Kakizono, T., Nagai, S., 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga,Haematococcus pluvialis.Appl. Environ. Microbiol. 59:867–873.

    Google Scholar 

  • Lee, Y. K., Ding, S. Y., 1994. Cell cycle and accumulation of astaxanthin inHaematococcus lacustris (Chlorophyta).J. Phycol. 30:445–449.

    Article  Google Scholar 

  • Liu, J. G., Zhang, J. P., 2000a. Photosynthetic and respiration rate ofHaematococcus pluvialis.Ocean. et Limnol. Sinica 31(5):390–395.

    Google Scholar 

  • Liu, J. G., Yin, M. Y., Zhang, J. P. et al., 2000b. Cell cycle ofHaematococcus plavialis.Ocean. et Limnol. Sinica 31(2):145–150.

    Google Scholar 

  • Lu, F., Vonshak, A., Gabbay, R. et al., 1995. The biosynthetic pathway of astaxanthin in a green algaHaematococcus pluvialis as indicated by inhibition with diphenylamine.Plant Cell Physiol. 36(8):1519–1524.

    Google Scholar 

  • Pratt, R., Fong, J., 1940. Studies onChlorella vulgaris. III. Growth ofChlorella and changes in the hydrogen-ion and ammonium-ion concentration in solutions containing nitrate and ammonium nitrogen.Am. J. Botany 27:735–743.

    Article  Google Scholar 

  • Pringshein, E. G., 1966. Nutritional requirement ofHaematococcus pluvialis and related species.J. Phycol. 2:1–7.

    Article  Google Scholar 

  • Proctor, V. W., 1957. Preferential assimilation of nitrate ion byHaematococcus pluvialis.Am. J. Botany 44: 141–143.

    Article  Google Scholar 

  • Shi, Z. L., Dai, G. S., Wang, H., Huang, Y. F. et al., 1980. Determination of nitrate in seawater by cadmium-copper reduction method.J. of Shandong College of Oceanology 10(3):53–63.

    Google Scholar 

  • Sommer, T. R., Potts, W. T., Morrissy, N. M., 1991. Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss).Aquaculture 94:79–88.

    Article  Google Scholar 

  • Stross, R. G., 1963. Nitate preference inHaematococcus as controlled by strain, age of inoculum, and pH of the medium.Canadian J. Microbiology 9:33–40.

    Article  Google Scholar 

  • Tan, S., Francis, X., Cunningham, J. et al., 1995. Cytochrome floss in astaxanthin-accumulating red cells ofHaematococcus pluvialis (Chlorophyteae): comparison of photosynthetic activity, phytosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells.J. Phycol. 31:897–905.

    Article  Google Scholar 

  • Yong, Y. Y. R., Lee, Y. K., 1991. Do carotenoids play a photoprotective role in the cytoplasm ofHaematococcus lacustris (Chlorophyta)?Phycolohia. 30(3):257–261.

    Google Scholar 

  • Zoltnik, I., Sokenik, A., Dubensky, Z., 1993. Physiological and photosynthetic changes during the formation of red aplanospores in ChlorophyteHaematococcus pluvialis.J. Phycol. 29(4):463–469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 4139 from Institute of Oceanology, Chinese Academy of Sciences.

Projects 39500114, 39970575, A/2786-1 and 9565 supported by NSFC, IFS (International Foundation for Sciences) and Sci-Tech Commission of Shandong Province respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jian-guo, L., Ming-yan, Y., Jing-pu, Z. et al. Dynamic changes of inorganic nitrogen and astaxanthin accumulation inHaematococcus pluvialis . Chin. J. Ocean. Limnol. 20, 358–364 (2002). https://doi.org/10.1007/BF02847927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02847927

Key words

Navigation