Skip to main content
Log in

Determination of thermal effusivity of solids by a photoacoustic scanning technique

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A new method is proposed to determine the thermal effusivity of solid samples using a one dimensional photoacoustic scanning technique. The method employs a sample configuration in which the backing for a good light absorber layer is changed from a reference sample to the unknown sample by scanning the absorber surface with an incident modulated light beam. From the measured phase difference or amplitude ratio one can determine the thermal effusivity of the unknown sample, knowing the effusivity of the reference sample. The Rosencwaig-Gersho theory of photoacoustic effect has been extended to the present experimental situation and expressions have been derived for photoacousitc phase difference and amplitude ratio as the backing is changed. Values calculated using these expressions are found to agree well with measured values for different sample combinations except in amplitude ratio values when the thermal effusivities of the samples differ very widely. The reason for this disagreement is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Rosencwaig,Photoacoustics and photoacoustic spectroscopy (Wiley, New York, 1980)

    Google Scholar 

  2. C K N Patel and A C Tam,Rev. Mod. Phys. 53, 517 (1981)

    Article  ADS  Google Scholar 

  3. A C Tam,Rev. Mod. Phys. 58, 381 (1986)

    Article  ADS  Google Scholar 

  4. P Korpiun and R Tilgner,J. Appl. Phys. 51, 6115 (1980)

    Article  ADS  Google Scholar 

  5. J Ospal and A Rosencwaig,J. Appl. Phys. 53, 4240 (1982)

    Article  ADS  Google Scholar 

  6. J Baumann and R Tilgner,J. Appl. Phys. 58, 1982 (1985)

    Article  ADS  Google Scholar 

  7. U Seidel, K Haupt, H G Walther, J Burt and B K Bein,J. Appl. Phys 75, 4396 (1994)

    Article  ADS  Google Scholar 

  8. P Charpentier, F Lepoutre and L Bertrand,J. Appl. Phys. 53, 608 (1982)

    Article  ADS  Google Scholar 

  9. A Lachaine and P Poulet,Appl. Phys. Lett. 45, 953 (1984)

    Article  ADS  Google Scholar 

  10. K N Madhusoodanan, M R Thomas and J Philip,J. Appl. Phys. 62, 1162 (1987)

    Article  ADS  Google Scholar 

  11. M J Adams and G F Kirkbright,Analyst 102, 281 (1977)

    Article  Google Scholar 

  12. A Rosencwaig and A Gersho,J. Appl. Phys. 47, 64 (1976)

    Article  ADS  Google Scholar 

  13. C L Cesar, H Vargas, J Mendes Filho and L C M Miranda,Appl. Phys. Lett. 43, 555 (1983)

    Article  ADS  Google Scholar 

  14. A Lachaine,J. Appl. Phys. 57, 5075 (1985)

    Article  ADS  Google Scholar 

  15. B Bonne, J L Laporte and Y Rousset,J. Appl. Phys. 67, 2253 (1990)

    Article  ADS  Google Scholar 

  16. U Zammit, M Marinelli, R Pizzo Ferrato, F Scudieri and S Martellucci,J. Phys. E21, 935 (1988)

    ADS  Google Scholar 

  17. Z Yasa and N Amer, inTopical meeting on acoustic spectroscopy (Ames, Iowa, 1979) WA5-1

    Google Scholar 

  18. O Pessoa Jr, C L Cesar, N A Patel, H Vargas, C C Ghizoni and L C M Miranda,J. Appl. Phys. 59, 1316 (1986)

    Article  ADS  Google Scholar 

  19. S Thomas, J Isaac and J Philip,Rev. Sci. Instrum. 66, 3907 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philip, J., Sudhakaran, A.A. Determination of thermal effusivity of solids by a photoacoustic scanning technique. Pramana - J. Phys 47, 493–504 (1996). https://doi.org/10.1007/BF02847543

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02847543

Keywords

PACS Nos

Navigation