Skip to main content
Log in

Magnetic susceptibility variations of the Ediacaran cap carbonates in the Yangtze platform and their implications for paleoclimate

  • Geology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Magnetic susceptibility (MS) data were obtained from 11 sections of the Doushantuo (Ediacaran) cap carbonate that directly overlies the Nantuo glacial diamictite in the southeastern margin of the Yangtze platform. The MS data revealed two regionally correlatable peaks at the bottom and top of the cap carbonate, separated by an interval of low values. The lower MS peak coincides with high percentage of insoluble siliciclastic residues that are compositionally identical to the matrix of the underlying diamictite, suggesting its origin controlled mainly by detrital components during the first phase of cap carbonate deposition at the end of the glaciation. The upper MS peak is associated with high clay content and iron sulfides, and can be interpreted as either derived from enhanced greenhouse weathering that could have brought more terrigenous components into the ocean, or the result of ocean anoxia at the late stage of cap carbonate deposition that could led to formation of abundant iron sulfides. The regionally consistent MS curves from the cap carbonates provided the first geophysical record for the rapid climate change from icehouse to greenhouse conditions in the aftermath of the Neoproterozoic “snowball Earth” event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brasier, M. D. and G. Shields, 2000. Neoproterozoic chemostratigraphy and correlation of the Port Askaig glaciation, Dalradian Supergroup of Scotland.J. Geol. Soc. Land. 157: 909–914.

    Article  Google Scholar 

  • Condon, D, M. Y. Zhu, S. Bowring, W. Wang, A. H. Yang and Y. G. Jin, 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. (Science Express Paper, Feb 24 online).

  • Crick, R. E., B. B. Ellwood, J. Hladil, A. El Hassani, F. Hrouda and I. Chlupác, 2001. Magnetostratigraphy susceptibility of the Přídolian-Lochkovian (Silurian-Devonian) GSSP (Klonk, Czech Republic) and a coeval sequence in Anti-Atlas Morocco.Palaeogeography, Palaeoclimatology, Palaeoecology 167: 73–100.

    Article  Google Scholar 

  • Ellwood, B. B., R. E. Crick and A. El Hassani, 1999. The magneto-susceptibility event and cyclostratigraphy (MSEC) method used in geological correlation of Devonian rocks from Anti-Atlas Morocco.American Association of Petroleum Geologists Bulletin 83: 1119–1134.

    Google Scholar 

  • Ellwood, B. B., R. E. Crick, A. El Hassani, S. L. Benoist and R. H. Young, 2000. The magneto-susceptibility event and cyclostratigraphy (MSEC) method applied to marine rocks: Detrital input versus carbonate productivity.Geology 28(12): 1135–1138.

    Article  Google Scholar 

  • Ellwood, B. B., R. E. Crick, J. L. García-Alcalde Fernandez, F. M. Soto, M. Truyóls-Massoni, A. El Hassani and E. J. (Ned) Kovas, 2001. Global correlation using magnetic susceptibility data from Lower Devonian rocks.Geology 29(7): 583–586.

    Article  Google Scholar 

  • Ellwood, B. B., K. M. Petruso, F. B. Harrold and J. Schuldenrein, 1997. High-resolution paleoclimatic trends for the Holocene identified using magnetic susceptibility data from archaeological excavations in caves.Journal of Archaeological Sciences 24: 569–573.

    Article  Google Scholar 

  • Grotzinger, J. P. and A. H. Knoll, 1995. Anomalous carbonate precipitates: is the Precambrian the key to the Permian?Palaios 10: 578–596.

    Article  Google Scholar 

  • Hoffman, P. F. and D. P. Schrag, 2002. The snowball Earth hypothesis: testing the limits of global change.Terra Nova 14: 129–155.

    Article  Google Scholar 

  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson and D. P. Schrag, 1998. A Neoproterozoic snowball Earth.Science 281: 1342–1346.

    Article  Google Scholar 

  • Hounslow, M. W. and B. A. Maher, 1999. Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments.Journal of Geophysical Research 104(B3): 5047–5061.

    Article  Google Scholar 

  • James, N. P., G. M. Narbonne and T. K. Kyser, 2001. Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown.Canadian Journal of Earth Science 38: 1229–1262.

    Article  Google Scholar 

  • Jiang, G. Q., M. J. Kennedy and N. Christie-Blick, 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates.Nature 426: 822–826.

    Article  Google Scholar 

  • Kennedy, M. J., 1996. Stratigraphy, sedimentology, and isotope geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, δ13C excursions and carbonate precipitation.Journal of Sedimentary Research 66: 1050–1064.

    Google Scholar 

  • Kennedy, M. J., N. Christie-Blick and L. E. Sohl, 2001. Are Proterozoic cap carbonates and isotopic excursion a record of gas hydrate destabilization following Earth's coldest intervals?.Geology 29(5): 443–446.

    Article  Google Scholar 

  • Liu, B. J. and X. S. Xu (Editors in chief), 1994. Atlas of lithofacies and paleogeography of south China (Sinian-Trissic). Science Publishing House, Beijing, China. p. 24–31. (in Chinese)

    Google Scholar 

  • Nogueira, A. C. R., C. Riccomini, A. N. Sial, C. A. V. Moura and T. R. Fairchild, 2003. Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth.Geology 31(7): 613–616.

    Article  Google Scholar 

  • Rack, F. R., E. A. Heise and R. Stein, 1995. Magnetic susceptibility and physical properties of sediment cores from site 893, Santa Barbara Basin: records of sediment diagenesis of paleoclimatic and paleoceanographic changes?Proceedings of the Ocean Drilling Program. Scientific Results, College Station, Tex. (Ocean Drilling Program),146(part 2): 145–168.

    Google Scholar 

  • Stage, M., 1999. Signal analysis of cyclicity in Maastrichtian pelagic chalks from the Danish North Sea.Earth and Planetary Science Letters 173: 75–90.

    Article  Google Scholar 

  • Stage, M., 2001. Magnetic susceptibility as carrier of a climatic signal in chalk.Earth and Planetary Science Letters 188: 17–27.

    Article  Google Scholar 

  • Stanjek, H. J., W. E. Fassbinder, H. Vali, H. Wagele and W. Graf, 1994. Evidence of biogenic greigite (ferromagnetic Fe3O4) in soil.European Journal of Soil Science 45: 97–103.

    Article  Google Scholar 

  • Wanless, H. R., 1979. Limestone response to stress: pressure solution and dolomitization.Journal of Sedimentary 49(2): 437–462.

    Google Scholar 

  • Zhang, S. H., G. Q. Jiang, J. M. Zhang, B. Song, M. J. Kennedy and N. Christie-Blick, 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations.Geology 33(6): 473–476.

    Article  Google Scholar 

  • Zhang, S. H., X. L. Wang and H. Zhu, 2000. Magnetic susceptibility variations of carbonates controlled by sea-level changes-Examples in Devonian to Carboniferous strata in southern Guizhou Province, China.Science in China (Series D) 43(3): 266–275.

    Article  Google Scholar 

  • Zhang, T. G., X. L. Chu, Q. R. Zhang, L. J. Feng and W. G. Huo, 2003. Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoie.Chinese Science Bulletin 48(13): 1375–1380.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the National Natural Science Foundation (Grant No.40032010B).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huaichun, W., Shihong, Z., Ganqing, J. et al. Magnetic susceptibility variations of the Ediacaran cap carbonates in the Yangtze platform and their implications for paleoclimate. Chin. J. Ocean. Limnol. 23, 291–298 (2005). https://doi.org/10.1007/BF02847151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02847151

Key words

Navigation