Skip to main content
Log in

Phase transitions of a feedback amplifier

  • Statistical Physics
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The phase transition behaviour of an amplifier with positive feedback is experimentally studied. The results are interpreted using catastrophe theory language. Zero (in Gilmore’s classification), first and second-order transitions are demonstrated by driving the system along appropriate trajectories in control parameter space and the cusp and the spinodal are mapped. The fluctuations of the order parameter are investigated and their relationship to system response time established. Quench experiments analogous to those familiar in condensed matter have also been performed and with similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arecchi F T 1979 inPattern formation by dynamic systems and pattern recognition (Ed) H Haken (Berlin: Springer Verlag) p 28

    Google Scholar 

  • Billotet C and Binder K 1979Z. Phys. B32 195

    ADS  Google Scholar 

  • Bonifacio R and Lugiato L A 1979 inPattern formation by dynamic systems and pattern recognition (Ed) H Haken (Berlin: Springer Verlag) p 16

    Google Scholar 

  • Davenport W B and Root W L 1958An introduction to the theory of random signals and noise (New York: McGraw Hill)

    MATH  Google Scholar 

  • de Fontaine D 1979Solid State Phys. 34 73

    Google Scholar 

  • Eigen M 1971Naturwissenschaften 33a 465

    Article  ADS  Google Scholar 

  • Gilmore R 1981Catastrophe theory for scientists and engineers (New York: John Wiley)

    MATH  Google Scholar 

  • Glansdorf P and Prigogine I 1971Thermodynamic theory of structure, stability and fluctuations (New York: Wiley)

    Google Scholar 

  • Grey P R and Meyer R G 1977Analysis and design of analog integrated circuits (New York: Wiley)

    Google Scholar 

  • Haken H 1978Synergetics—An introduction (Berlin: Springer Verlag)

    MATH  Google Scholar 

  • Horn P M, Carruthers T and Long M T 1976Phys. Rev. A34 833

    ADS  Google Scholar 

  • IFF Bulletin 1974 (Julich: IFF)

  • Jakeman E 1970J. Phys. A3 201

    ADS  Google Scholar 

  • Kabashima S, Itsumi M, Kawakubo T and Nagashima T 1975J. Phys. Soc. Jpn. 39 1183

    Article  ADS  Google Scholar 

  • Kabashima S, Kogure S, Kawakubo T and Okade T 1979J. Appl. Phys. 50 6296

    Article  ADS  Google Scholar 

  • Kabashima S, Yamazaki H and Kawakubo T 1976J. Phys. Soc. Jpn. 40 921

    Article  ADS  Google Scholar 

  • Kawakubo T and Kabashima S 1974J. Phys. Soc. Jpn. 37 1199

    Article  ADS  Google Scholar 

  • Keizer J 1981J. Chem. Phys. 74 1350

    Article  ADS  Google Scholar 

  • Landau L D and Lifshitz E M 1959Statistical physics (Oxford: Pergamon Press)

    Google Scholar 

  • Landauer R 1962J. Appl. Phys. 33 2209

    Article  ADS  Google Scholar 

  • Lebowitz J L, Marro J and Kalos M H 1982Acta Metall. 30 297

    Article  Google Scholar 

  • Neelakantan K and Venkataraman G 1982Acta Metall. 31 77

    Google Scholar 

  • Nicolis G 1980 inSystems far from equilibrium (Ed) L Garrido (Berlin: Springer Verlag) p 91

    Chapter  Google Scholar 

  • Nicolis G and Prigogine I 1977Self organization in nonequilibrium systems (New York: Wiley)

    MATH  Google Scholar 

  • Pacault A and Vidal C (Eds) 1979Synergetics (Berlin: Springer Verlag)

    MATH  Google Scholar 

  • Patashinskii A Z and Pokrovski V I 1979Fluctuation theory of phase transitions (Oxford: Pergamon Press)

    Google Scholar 

  • Prigogine I and Nicolis G 1971Q. Rev. Biophys. 4 107

    Article  Google Scholar 

  • Shenoy S R and Agarwal G S 1981Phys. Rev. B23 1977

    ADS  Google Scholar 

  • Suzuki M 1979 inSynergetics (Eds) A Pacault and C Vidal (Berlin: Springer Verlag) p 94

    Google Scholar 

  • Swinney H L and Gollub J P 1981Hydrodynamic instabilities and the transition to turbulence (Berlin: Springer Verlag)

    MATH  Google Scholar 

  • Venkataraman G 1979Trans. Indian Inst. Metals 32 435

    Google Scholar 

  • Venkataraman G and Balakrishnan V 1978Phys. News 2 1

    Google Scholar 

  • Thomas H 1968 inTheory of condensed matter (Vienna: IAEA) p 357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neelakantan, K., Venkataraman, G. Phase transitions of a feedback amplifier. Pramana - J. Phys 22, 387–405 (1984). https://doi.org/10.1007/BF02847106

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02847106

Keywords

Navigation