Skip to main content
Log in

Collective dipole oscillations in atomic nuclei and small metal particles

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The systematics of photon absorption cross sections in nuclei and small metal particles are examined as a function of the number of constituent fermionsA. It is pointed out that the shell-structure-linked oscillations in the full width at half maximum (FWHM) of the photoneutron cross section in nuclei, earlier recognized forA>63, in fact persist down to the lightest nuclei. Averaging over the oscillations or focusing on the lower envelope of the oscillating curve (magic nuclei), the FWHM is seen to generally decrease with increasingA, consistent withA −1/3, a dependence which was earlier known to hold in metal particle systems. If the FWHMs are scaled by the respective Fermi energies and the inverse radii by the Fermi wave vectors, the two data sets become comparable in magnitude. A schematic theoretical description of the systematics is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Sugano, inMicroclusters edited by S Sugano, Y Nishina and S Ohnishi (Springer Berlin, 1987)

    Google Scholar 

  2. W A de Heer, W D Knight, M Y Chou and M L Cohen,Solid state physics 40, 93 (1987)

    Article  Google Scholar 

  3. B L Berman and S C Fultz,Rev. Mod. Phys. 47, 713 (1975)

    Article  ADS  Google Scholar 

  4. A van der Woude,Prog. Part. Nucl. Phys. 18, 217 (1987)

    Article  ADS  Google Scholar 

  5. M Born and E Wolf,Principles of optics (Pergamon, Oxford, 1970) ch. 13

    Google Scholar 

  6. S P Apell, J Giraldo and S Lundqvist,Phase Transitions 24–26, 577 (1990)

    Article  Google Scholar 

  7. V V Kresin,Phys. Rep. 220, 1 (1992)

    Article  ADS  Google Scholar 

  8. M Barma and R S Bhalerao, inPhysics and chemistry of finite systems: from clusters to crystals edited by P Jena, S N Khanna and B K Rao (Kluwer, Dordrecht, 1992) NATO ASI Sr.Vol II, p. 881

    Google Scholar 

  9. S S Dietrich and B L Berman,At. Data Nucl. Data Tables 38, 199 (1988)

    Article  ADS  Google Scholar 

  10. R Bergère, inPhotonuclear reactions edited by S Costa and C Schaerf, Lecture Notes in Physics (Springer, Berlin, 1977)61, 114

    Google Scholar 

  11. K A Snover,Ann. Rev. Nucl. Part. Sci. 36, 545 (1986)

    Article  ADS  Google Scholar 

  12. Although28Si is not a magic nucleus, it displays behaviour similar to a magic nucleus in at least one other context: the plot of nuclear electric quadrupole moment vsZ orN passes through a zero near28Si, indicating a prolate to oblate transition. Similar transitions also occur at the magic numbers [13].

  13. M A Preston and R K Bhaduri,Structure of the nucleus (Addison-Wesley, Reading, 1975 figs. 3.2 and 10.12 pages 73 and 470

    Google Scholar 

  14. U Kreibig and L Genzel,Surf. Sci. 156, 678 (1985)

    Article  ADS  Google Scholar 

  15. K Selby, M Vollmer, J Masui, W A de Heer and W D Knight,Phys. Rev. B40, 5417 (1989)

    ADS  Google Scholar 

  16. K Selby, V Kresin, J Masui, M Vollmer, A Scheidemann and W D Knight,Z. Phys. D19, 43 (1991)

    ADS  Google Scholar 

  17. J Tiggesbäumker, L Köller, H O Lutz and K H Meiwes-Broer,Chem. Phys. Lett. 190, 42

  18. W D Myers, W J Swiatecki, T Kodama, L J El-Jaick and E R Hilf,Phys. Rev. C15, 2032 (1977)

    ADS  Google Scholar 

  19. K P Charlé, W Schulze and B WinterZ. Phys. D12, 471 (1989)

    ADS  Google Scholar 

  20. N W Ashcroft and N D Mermin,Solid state physics (Holt, Rinehart and Winston, New York, 1976) ch. 1

    Google Scholar 

  21. M Goldhaber and E Teller,Phys. Rev. 74, 1046 (1948)

    Article  ADS  Google Scholar 

  22. H Steinwedel and J H D Jensen,Z. Naturforschung 5a, 413 (1950)

    ADS  Google Scholar 

  23. U Kreibig,J. Phys. F4, 999 (1974)

    Article  ADS  Google Scholar 

  24. A Kawabata and R Kubo,J. Phys. Soc. Jpn. 21, 1765 (1966)

    Article  ADS  Google Scholar 

  25. M Barma and V Subrahmanyam,J. Phys. Cond. Matter 1, 7681 (1989)

    Article  ADS  Google Scholar 

  26. C Yannouleas and R Broglia,Ann. Phys. (NY) 217, 105 (1992)

    Article  ADS  Google Scholar 

  27. D M Brink,Nucl. Phys. 4, 215 (1957)

    Article  Google Scholar 

  28. J Blocki, Y Boneh, J R Nix, J Randrup, M Robel, A J Sierk and W J Swiatecki,Ann. Phys. (NY) 113, 330 (1978)

    Article  ADS  Google Scholar 

  29. C Yannouleas,Nucl. Phys. A439, 336 (1985)

    ADS  Google Scholar 

  30. J Wambach,Rep. Prog. Phys. 51, 989 (1988)

    Article  ADS  Google Scholar 

  31. For real nuclei, the full two-body contribution Γ may differ significantly from Γ .

  32. K Okamoto,Phys. Rev. 110, 143 (1958)

    Article  ADS  Google Scholar 

  33. This is in contrast to the statements made in various reviews [34–37] that the width, likeω 0, varies smoothly withA.

  34. J Speth and A van der Woude,Rep. Prog. Phys. 44, 719 (1981)

    Article  ADS  Google Scholar 

  35. K Goeke and J Speth,Ann. Rev. Nucl. Part. Sci. 32, 65 (1982)

    Article  ADS  Google Scholar 

  36. M N Harakesh, contribution toXVII Summer School on nuclear structure by means of nuclear reactions, Mikolajki, Polland 1985 (unpublished)

    Google Scholar 

  37. A van der Woude, inelectric and magnetic giant resonances in nuclei edited by J Speth (World Scientific, Singapore, 1991 100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Bhalerao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalerao, R.S., Barma, M. Collective dipole oscillations in atomic nuclei and small metal particles. Pramana - J Phys 40, 311–320 (1993). https://doi.org/10.1007/BF02845850

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02845850

Keywords

PACS Nos

Navigation