, Volume 48, Issue 2, pp 603–615 | Cite as

Dynamical signatures of ‘phase transitions’: Chaos in finite clusters

  • Vishal Mehra
  • Saroj K Nayak
  • Ramakrishna Ramaswamy


Finite clusters of atoms or molecules, typically composed of about 50 particles (and often as few as 13 or even less) have proved to be useful prototypes of systems undergoing phase transitions. Analogues of the solid-liquid melting transition, surface melting, structural phase transitions and the glass transition have been observed in cluster systems. The methods of nonlinear dynamics can be applied to systems of this size, and these have helped elucidate the nature of the microscopic dynamics, which, as a function of internal energy (or ‘temperature’) can be in a solidlike, liquidlike, or even gaseous state. The Lyapunov exponents show a characteristic behaviour as a function of energy, and provide a reliable signature of the solid-liquid melting phase transition. The behaviour of such indices at other phase transitions has only partially been explored. These and related applications are reviewed in the present article.


Clusters chaos phase transitions Lyapunov exponents 


5.45 64.70 36.40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J Lebowitz and O Penrose,Phys. Today, February 1973, p. 23Google Scholar
  2. [2]
    See, e.g.The physics and chemistry of small clusters, edited by P Jena, B K Rao and S N Khanna, (New York, Plenum, 1987)Google Scholar
  3. [2a]
    Physics and Chemistry of finite systems: From clusters to crystals, edited by P Jena, S N Khanna and B K Rao, (Kluwer Dordrecht, 1992)Google Scholar
  4. [2b]
    Clusters of atoms and molecules, edited by H. Haberland (Springer-Verlag, 1994)Google Scholar
  5. [3]
    R S Berry, inClusters of atoms and molecules, edited by H Haberland (Springer-Verlag, 1994)Google Scholar
  6. [4]
    S G Kim and D Tománek,Phys. Rev. Lett. 72, 2418 (1994)CrossRefADSGoogle Scholar
  7. [5]
    Seee.g. R F Service,Science 271, 920 (1996)CrossRefADSGoogle Scholar
  8. [6]
    D J Wales,Science 271, 925 (1996)CrossRefADSGoogle Scholar
  9. [7]
    H Haberland, inClusters of atoms and molecules, edited by H Haberland (Springer-Verlag, 1994)Google Scholar
  10. [8]
    S Sugano,Microcluster Physics, (Springer, Berlin, 1991)Google Scholar
  11. [9]
    M Pettini,Phys. Rev. E 47, 828 (1991)ADSMathSciNetGoogle Scholar
  12. [10]
    Y Y Yamaguchi,Slow relaxation at critical point of second order phase transition in a highly chaotic hamiltonian system, LANL archives chao-dyn 9602002Google Scholar
  13. [11]
    R J Hinde and R S Berry,J. Chem. Phys. 99, 2942 (1993)CrossRefADSGoogle Scholar
  14. [12]
    J K Lee, J A Barker and F F Abraham,J. Chem. Phys. 58, 3166 (1973)CrossRefADSGoogle Scholar
  15. [13]
    C L Briant and J J Burton,Nature Physical Science 243, 100 (1973);J. Chem. Phys. 63, 2045 (1975)CrossRefADSGoogle Scholar
  16. [14]
    Elemental and molecular clusters, edited by G Benedek, T P Martin and G Pacchioni, (Springer, Berlin, 1988)Google Scholar
  17. [15]
    A Heidenreich, I Oref and J Jortner,J. Chem. Phys. 96, 7517 (1992)CrossRefGoogle Scholar
  18. [16]
    R S Berry, T L Beck, H L Davis and J Jellinek,Adv. Chem. Phys. 70, 75 (1988)CrossRefGoogle Scholar
  19. [17]
    R S Berry,Sci. Am. 61, 56 (1990)Google Scholar
  20. [18]
    D Wales,Mol. Phys. 78, 151 (1993)CrossRefADSGoogle Scholar
  21. [19]
    H Matsuoka, T Hirokawa, M Matsui and M Doyama,Phys. Rev. Lett. 69, 297 (1992)CrossRefADSGoogle Scholar
  22. [20]
    H P Cheng and R S Berry, inSymposium on clusters and cluster-assembled materials, Materials Research Society, pp 241–252, (1991); H P Cheng and R S Berry,Phys. Rev. A 45, 7969 (1992)Google Scholar
  23. [21]
    J-B Maillet, A Boutin and A H Fuchs,Phys. Rev. Lett. 76, 4336 (1996)CrossRefADSGoogle Scholar
  24. [22]
    K D Ball, R S Berry, R E Kunz, F Li, A Proykova, and D J Wales,Science 271, 963 (1996)CrossRefADSGoogle Scholar
  25. [23]
    M P Allen and D J Tildesley,Computer simulation of liquids (Oxford University Press, Oxford, 1987)MATHGoogle Scholar
  26. [24]
    Seee.g. R. M. Stratt, Acc. Chem. Res.28, 201 (1995) A technique to compute Lyapunov exponents from equilibrium simulations is discussed by C. Chakravarty and R. Ramaswamy inInstantaneous normal mode spectra of quantum clusters, J. Chem. Phys. (in press)CrossRefGoogle Scholar
  27. [25]
    R P Gupta,Phys. Rev. B23, 6265 (1981)ADSGoogle Scholar
  28. [26]
    D Tomanek, S Mukherjee and K H Bennemann,Phys. Rev. B28, 665Google Scholar
  29. [27]
    S Sawada and S Sugano,Z. Phys. D14, 247 (1989)ADSGoogle Scholar
  30. [28]
    N Ju and A Bulgac,Phys. Rev. B48, 2721 (1993)ADSGoogle Scholar
  31. [29]
    T Kanishi and K Kaneko,J. Phys. A25, 6283 (1992)ADSGoogle Scholar
  32. [30]
    H D Meyer,J. Chem. Phys. 84, 3147 (1986)CrossRefADSMathSciNetGoogle Scholar
  33. [31]
    Ya B Pesin,Russ. Math. Surveys,32, 55 (1977)CrossRefMathSciNetGoogle Scholar
  34. [32]
    G Benettin, L Galgani and J M Strelcyn,Phys. Rev. A14, 2338 (1976)ADSGoogle Scholar
  35. [33]
    J P Eckmann, and D Ruelle,Rev. Mod. Phys.,57, 617 (1985)CrossRefADSMathSciNetGoogle Scholar
  36. [34]
    P Butera and G Caravati,Phys. Rev. A36, 962 (1987)ADSGoogle Scholar
  37. [35]
    H A Posch and W G Hoover,Phys. Rev. A38, 473 (1988);Phys. Rev. A39, 2175 (1989)ADSGoogle Scholar
  38. [36]
    R J Hinde, R S Berry and D J Wales,J. Chem. Phys. 96, 1376 (1992)CrossRefADSGoogle Scholar
  39. [37]
    S K Nayak, R Ramaswamy and C Chakravarty,Phys. Rev. E51, 3376 (1995)ADSGoogle Scholar
  40. [38]
    F A Lindemann,Phys. Zeits. 14, 600 (1910)Google Scholar
  41. [39]
    S K Ma,Statistical physics, (World Scientific, Singapore, 1985)Google Scholar
  42. [40]
    D J Wales and R S Berry,J. Chem. Phys. 92, 4283 (1990)CrossRefADSGoogle Scholar
  43. [41]
    T L Beck, J Jellinek and R S Berry,J. Chem. Phys. 87, 545 (1987)CrossRefADSGoogle Scholar
  44. [42]
    H L Davis, J Jellinek and R S Berry,J. Chem. Phys. 86, 6456 (1987)CrossRefADSGoogle Scholar
  45. [43]
    H A Posch and W G Hoover,Phys. Rev. A38, 473 (1988);Phys. Rev. A39, 2175 (1989)ADSGoogle Scholar
  46. [44]
    P Labastie and R L Whetten,Phys. Rev. Lett. 65, 1567 (1990)CrossRefADSGoogle Scholar
  47. [45]
    S K Nayak, P Jena, K D Ball and R S Berry, to be publishedGoogle Scholar
  48. [46]
    V Mehra and R Ramaswamy, to be publishedGoogle Scholar
  49. [47]
    A Bonasera, V Latora and A Rapisarda,Phys. Rev. Lett. 75, 3434 (1995) S K Nayak, P Jena, A Bhattacharya and S D Mahanti,Phys. Rev. Lett. 00, (submitted, 1996)CrossRefADSGoogle Scholar
  50. [48]
    V Mehra and R Ramaswamy,Phys. Rev. E53, 3420 (1996)ADSGoogle Scholar
  51. [49]
    M Toda,Phys. Rev. Lett. 74, 2670 (1995)CrossRefADSGoogle Scholar
  52. [50]
    C Grebogi, E Ott, J Romeiras and J Yorke,Phys. Rev. A36, 5365 (1987)ADSMathSciNetGoogle Scholar
  53. [51]
    M V Kuzmin, I V Nemov, A A Stuchebrukhov, V N Bagratashvili and V S Letokhov,Chem. Phys. Lett. 124, 522 (1986)CrossRefADSGoogle Scholar
  54. [52]
    S Sastry,Phys. Rev. Lett. 76, 3738 (1996)CrossRefADSGoogle Scholar
  55. [53]
    S Habib and O Pyne,Phys. Rev. Lett. 74, 70 (1995)CrossRefADSGoogle Scholar
  56. [54]
    G M Zaslavskii,Chaos in dynamical systems (Harwood Academic, 1985)Google Scholar
  57. [55]
    R Livi, M Politi, S Ruffo and A Vulpiani,J. Stat. Phys. 46, 147 (1987)CrossRefADSMathSciNetGoogle Scholar
  58. [56]
    G Paladin and A Vulpiani,Phys. Lett. A118, 14 (1986)ADSMathSciNetGoogle Scholar
  59. [57]
    C Amitrano and R S Berry,Phys. Rev. Lett. 68, 729 (1992)CrossRefADSGoogle Scholar
  60. [58]
    C Amitrano and R S Berry,Z. Phys. D26, 388 (1993)ADSGoogle Scholar
  61. [59]
    U A Salian, S N Behera and V S Ramamurthy,J. Chem. Phys. 105, 3679 (1996)CrossRefADSGoogle Scholar
  62. [60]
    S J Wang and W Cassing,Ann. Phys. (N.Y.) 159, 328 (1985)CrossRefADSMathSciNetGoogle Scholar
  63. [60]a
    W Cassing and A Pfitzner,Z. Phys. A337, 175 (1990)Google Scholar
  64. [61]
    V Mehra and R Ramaswamy, unpublishedGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1997

Authors and Affiliations

  • Vishal Mehra
    • 1
  • Saroj K Nayak
    • 1
    • 2
  • Ramakrishna Ramaswamy
    • 1
  1. 1.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of PhysicsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations