Skip to main content
Log in

Some recent advances in the theory of homogeneous isotropic turbulence

  • Turbulence
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We review some advances in the theory of homogeneous, isotropic turbulence. Our emphasis is on the new insights that have been gained from recent numerical studies of the three-dimensional Navier Stokes equation and simpler shell models for turbulence. In particular, we examine the status of multiscaling corrections to Kolmogorov scaling, extended self similarity, generalized extended self similarity, and non-Gaussian probability distributions for velocity differences and related quantities. We recount our recent proposal of a wave-vector-space version of generalized extended self similarity and show how it allows us to explore an intriguing and apparently universal crossover from inertial- to dissipation-range asymptotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Van Dyke,An album of fluid motion (The Parabolic Press, Stanford, California, 1982)

    Google Scholar 

  2. K R Sreenivasan and R A Antonia,Ann. Rev. Fluid Mech. 29, 435 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  3. E D Siggia,Ann. Rev. Fluid Mech. 26, 137 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  4. M Nelkin,Adv. Phys. 43, 143 (1994)

    Article  ADS  Google Scholar 

  5. V L’vov and I Procaccia,Phys. World 35, (1996)

  6. W D McComb,The physics of fluid turbulence, (Oxford University Press, Oxford, 1991)

    MATH  Google Scholar 

  7. U Frisch,Turbulence: the legacy of A N Kolmogorov (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  8. T Bohr, M H Jensen, G Paladin, A Vulpiani,Dynamical systems approach to turbulence, to be published (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  9. G K Batchelor,The theory of homogeneous turbulence (Cambridge University Press, Cambridge, 1953)

    MATH  Google Scholar 

  10. H Tennekes and J L Lumley,A first course in turbulence (MIT Press, Cambridge, Massachusetts, 1972)

    Google Scholar 

  11. A S Monin and A M Yaglom,Statistical fluid mechanics (MIT Press, Cambridge, Massachusetts, 1975)

    Google Scholar 

  12. G I Taylor,Proc. R. Soc. (London) A151, 421 (1935)

    ADS  Google Scholar 

  13. G S Saddoughi and S V Veeravalli,J. Fluid Mech. 268, 333 (1994)

    Article  ADS  Google Scholar 

  14. N Goldenfeld,Lectures on phase transitions and the renormalization group (Addison-Wesley, New York, 1992)

    Google Scholar 

  15. To the best of our knowledge, a direct mapping of a deterministic partial differential equation (PDE) with spatiotemporal chaos onto a stochastic PDE has been carried out only for the Kuramoto-Sivashinsky (KS) equation. This mapping uses a numerical coarse-graining procedure and shows, both in one and two spatial dimensions, that the KS equation is in the universality class of the Kardar-Parisi-Zhang (KPZ) equation, i.e., the long-distance and long-time behaviours of their correlations functions are the same. (See: S Zaleski,Physica D34, 427 (1989); F Hayot, C Jayaprakash and Ch Josserand,Phys. Rev. E47, 911 (1993); C Jayaprakash, F Hayot and R Pandit,Phys. Rev. Lett. 71, 15 (1993).) The case of the deterministically forced Navier-Stokes equation is considerably more subtle; however, in the absence of a direct mapping, it has been conjectured that the appropriate PDE is the NS equation with an additive, Gaussian white noise whose variance has a power-law dependence on the wave-vector [16,17,18]

    ADS  MathSciNet  Google Scholar 

  16. C DeDominicis and P C Martin,Phys. Rev. A19, 419 (1979)

    ADS  Google Scholar 

  17. V Yakhot and S A Orszag,J. Sci. Comput. 1, 3 (1986);Phys. Rev. Lett. 57, 1722 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. J K Bhattacharjee,J. Phys. A21, L 551 (1988);Phys. Rev. A40, 6374 (1989);Phys. Fluids A3, 879 (1991)

    Google Scholar 

  19. C-Y Mou and P B Weichman,Phys. Rev. Lett. 70, 1101 (1993)

    Article  ADS  Google Scholar 

  20. J K Bhattacharjee,Pramana — J. Phys. 48, 365 (1997)

    MathSciNet  ADS  Google Scholar 

  21. P Bak, C Tang and K Wiesenfeld,Phys. Rev. Lett. 59, 381 (1987);Phys. Rev. A38, 364 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. G Stolovitzky and K R Sreenivasan,Phys. Rev. E48, R33 (1993)

  23. S Douady, Y Couder and M E Brachet,Phys. Rev. Lett. 67, 983 (1991)

    Article  ADS  Google Scholar 

  24. O Cadot, S Douady and Y Couder,Phys. Fluids 7, 630 (1995)

    Article  ADS  Google Scholar 

  25. E Villermaux, E Sixou and Y Gagne,Phys. Fluids 7, 2008 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  26. L F Richardson,Weather prediction by numerical process (Cambridge University Press, Cambridge, 1922)

    MATH  Google Scholar 

  27. A N Kolmogorov,C.R. Acad. Sci. USSR 30, 301 (1941)

    Google Scholar 

  28. N Cao, S Chen and K R Sreenivasan,Phys. Rev. Lett. 77, 3799 (1996)

    Article  ADS  Google Scholar 

  29. H L Grant, R W Stewart and A Moilliet,J. Fluid Mech. 12, 241 (1962)

    Article  MATH  ADS  Google Scholar 

  30. K R Sreenivasan,Phys. Fluids 7, 2778 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. F Anselmet, Y Gagne, E J Hopfinger and R A Antonia,J. Fluid Mech. 140, 63 (1984)

    Article  ADS  Google Scholar 

  32. R Benzi, S Ciliberto, R Trippiccione, C Baudet, F Massaioli and S Succi,Phys. Rev. E48, R29 (1993)

  33. J Herweijer and W van de Water,Phys. Rev. Lett. 74, 4651 (1995)

    Article  ADS  Google Scholar 

  34. T Katsuyama, Y Horiuchi and K Nagata,Phys. Rev. E49, 4052 (1994)

    ADS  Google Scholar 

  35. S Grossman, D Lohse, V L’vov and I Procaccia,Phys. Rev. Lett. 73, 432 (1994)

    Article  ADS  Google Scholar 

  36. V S L’vov and I Procaccia,Phys. Rev. Lett. 74, 2690 (1994)

    Article  Google Scholar 

  37. G I Barenblatt and N Goldenfeld,Phys. Fluids 7, 3078 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. G Zocchi, J Maurer, P Tabeling and H Williame,Phys. Rev. E50, 3693 (1994)

    ADS  Google Scholar 

  39. B Chabaud, A Naert, J Peinke, F Chilla, B Castaing and B Hebral,Phys. Rev. Lett. 73, 3227 (1994)

    Article  ADS  Google Scholar 

  40. V Emsellem, L P Kadanoff, D Lohse, P Tabeling and J Wang, chao-dyn/9604009,Phys. Rev. E to appear

  41. A N Kolmogorov,J. Fluid Mech. 13, 82 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. A A Praskovsky,Phys. Fluids A4, 2589 (1992)

    ADS  Google Scholar 

  43. G Stolovitzky, P Kailasnath and K R Sreenivasan,J. Fluid Mech. 297, 275 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. G Stolovitzky and K R Sreenivasan,Rev. Mod. Phys. 66, 229 (1994)

    Article  ADS  Google Scholar 

  45. S T Thoroddsen and C W Van Atta,Phys. Fluids A4, 2592 (1992)

    ADS  Google Scholar 

  46. Y Gagne, M Marchand and B Castaing,J. Phys. 4, 1 (1994)

    Article  Google Scholar 

  47. S Chen, G D Doolen, R H Kraichnan and L P Wang,Phys. Rev. Lett. 74, 1755 (1995)

    Article  ADS  Google Scholar 

  48. K R Sreenivasan and P Kailasnath,Phys. Fluids A5, 512 (1993)

    ADS  Google Scholar 

  49. U Frisch, P L Sulem and M Nelkin,J. Fluid Mech. 87, 719 (1978)

    Article  MATH  ADS  Google Scholar 

  50. G Parisi and U Frisch, inTurbulence and predictability in geophysical fluid dynamics edited by M Ghil, R Benzi and G Parisi (North-Holland, Amsterdam, 1985) pp. 84–87

    Google Scholar 

  51. C Meneveau and K R Sreenivasan,J. Fluid Mech. 224, 429 (1991)

    Article  MATH  ADS  Google Scholar 

  52. Z S She and E Leveque,Phys. Rev. Lett. 72, 336 (1994)

    Article  ADS  Google Scholar 

  53. E D Siggia,J. Fluid Mech. 107, 375 (1981)

    Article  MATH  ADS  Google Scholar 

  54. Z S She, E Jackson and S A Orszag,Nature (London) 344, 226 (1990)

    Article  ADS  Google Scholar 

  55. G R Chavarria, C Baudet and S Ciliberto,Phys. Rev. Lett. 74, 1986 (1995)

    Article  ADS  Google Scholar 

  56. B Dubrulle,Phys. Rev. Lett. 73, 959 (1994)

    Article  ADS  Google Scholar 

  57. D Segel, V L’vov and I Procaccia,Phys. Rev. Lett. 76, 1828 (1996)

    Article  ADS  Google Scholar 

  58. C Meneveau,Phys. Rev. E54, 3657 (1996)

    ADS  Google Scholar 

  59. R Benzi, L Biferale, S Ciliberto, M Struglia and R Tripiccione,Europhys. Lett. 32, 709 (1995)

    Article  ADS  Google Scholar 

  60. S Chen, G Doolen, J R Herring, R H Kraichnan, S A Orszag and Z S She,Phys. Rev. Lett. 70, 3051 (1993)

    Article  ADS  Google Scholar 

  61. S Chen, G D Doolen, R H Kraichnan and Z S She,Phys. Fluids A5, 458 (1993)

    ADS  Google Scholar 

  62. R H Kraichnan,J. Fluid Mech. 5, 497 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. D Lohse and A Müller-Groeling,Phys. Rev. Lett. 74, 1747 (1995);Phys. Rev. E54, (1996)

    Article  ADS  Google Scholar 

  64. A Praskovsky and S Oncley,Phys. Rev. Lett. 73, 3399 (1994)

    Article  ADS  Google Scholar 

  65. R Benzi, L Biferale, G Paladin, A Vulpiani and M Vergassola,Phys. Rev. Lett. 67, 2299 (1991)

    Article  ADS  Google Scholar 

  66. Z S She,Phys. Rev. Lett. 66, 600 (1991)

    Article  ADS  Google Scholar 

  67. P Kailasnath, K R Sreenivasan and G Stolovitzky,Phys. Rev. Lett. 68, 2766 (1992)

    Article  ADS  Google Scholar 

  68. G Stolovitzky,The statistical order of small scale turbulence, Ph.D. Thesis, Yale University, USA (1994), cited in ref. [2]

    Google Scholar 

  69. Z S She and E C Waymire,Phys. Rev. Lett. 74, 262 (1995)

    Article  ADS  Google Scholar 

  70. S A Orszag and G S Patterson,Phys. Rev. Lett. 28, 76 (1972)

    Article  ADS  Google Scholar 

  71. R M Kerr,J. Fluid Mech. 153, 31 (1985)

    Article  MATH  ADS  Google Scholar 

  72. M M Rogers and P Moin,J. Fluid Mech. 176, 33 (1987)

    Article  ADS  Google Scholar 

  73. K Yamamoto and I Hosokawa,J. Phys. Soc. Jpn. 57, 1532 (1988)

    Article  ADS  Google Scholar 

  74. R H Kraichnan and R Panda,Phys. Fluids 31, (1988)

  75. M Meneguzzi and A Vincent, inAdvances in turbulence 3 edited by A V Johansson and P H Alfredsson (Springer, Berlin, 1991) pp. 211–220; A Vincent and M Meneguzzi,J. Fluid Mech. 258, (1994)

    Google Scholar 

  76. S Kida and K Ohkitani,Phys. Fluids A4, 1018 (1992)

    ADS  Google Scholar 

  77. J Jimenez, A A Wray, P G Saffman and R S Rogallo,J. Fluid Mech. 255, 65 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  78. N Cao, S Chen, and Z-S She,Phys. Rev. Lett. 77, 3711 (1996)

    Article  ADS  Google Scholar 

  79. E B Gledzer,Sov. Phys. Dokl. 18, 216 (1973)

    MATH  ADS  Google Scholar 

  80. K Ohkitani and M Yamada,Prog. Theor. Phys. 81, 329 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  81. A M Obukhov,Atmos. Oceanic Phys. 7, 41 (1971)

    Google Scholar 

  82. V N Desnyansky and E A Novikov,Atmos. Oceanic Phys. 10, 127 (1974)

    Google Scholar 

  83. M Yamada and K Ohkitani,J. Phys. Soc. Jpn. 56, 4210 (1987)

    Article  ADS  Google Scholar 

  84. M H Jensen, G Paladin and A Vulpiani,Phys. Rev. A43, 798 (1991)

    ADS  Google Scholar 

  85. D Pisarenko, L Bieferale, D Courvoisier, U Frisch and M Vergassola,Phys. Fluids A5, 2533 (1993)

    ADS  Google Scholar 

  86. L Kadanoff, D Lohse, J Wang and R Benzi,Phys. Fluids 7, 617 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  87. Sujan K Dhar, Ph.D. thesis, Indian Institute of Science, Bangalore (1996) unpublished

  88. L Kadanoff, D Lohse and N Schörghofer,Physica D160, 165 (1997)

    ADS  Google Scholar 

  89. L Biferale, A Lambert, R Lima and G Paladin,Physica D80, 105 (1995)

    ADS  Google Scholar 

  90. S K Dhar, A Sain and R Pandit,Phys. Rev. Lett. (to appear) (1997)

  91. L Biferale and R Kerr,Phys. Rev. E52, 61133 (1995)

    Google Scholar 

  92. R Benzi, L Biferale and G Parisi,Physica D65, 163 (1993)

    ADS  Google Scholar 

  93. N Schörghofer, L Kadanoff and D Lohse,Physica D88, 40 (1995)

    Google Scholar 

  94. Z S She, E Jackson and S A Orszag,Proc. R. Soc. London A434, 101 (1991)

    ADS  Google Scholar 

  95. M E Brachet, D I Meiron, S A Orszag, B G Nickel, R H Morf and U Frsich,J. Fluid Mech. 130, 411 (1983)

    Article  MATH  ADS  Google Scholar 

  96. J Eggers and S Grossmann,Phys Fluids A3, 1958 (1991)

    ADS  Google Scholar 

  97. S Grossmann and D Lohse,Phys. Rev. E50, 2784 (1994)

    ADS  Google Scholar 

  98. E Leveque and Z S She,Phys. Rev. Lett. 75, 2690 (1995)

    Article  ADS  Google Scholar 

  99. V Borue and S A Orszag,Europhys. Lett. 29, 6875 (1995)

    Article  Google Scholar 

  100. C Foias, O Manley and L Sirovich,Phys. Fluids A2, 464 (1990)

    ADS  MathSciNet  Google Scholar 

  101. L Biferale,Phys. Fluids A5, 428 (1993)

    ADS  Google Scholar 

  102. J Eggers and S Grossmann,Phys. Lett. A156, 444 (1991)

    ADS  MathSciNet  Google Scholar 

  103. D Lohse,Phys. Rev. Lett. 73, 3223 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhar, S.K., Sain, A., Pande, A. et al. Some recent advances in the theory of homogeneous isotropic turbulence. Pramana - J Phys 48, 325–364 (1997). https://doi.org/10.1007/BF02845638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02845638

Keywords

PACS Nos

Navigation