Skip to main content
Log in

Localized coherent structures of (2+1) dimensional generalizations of soliton systems

  • Integrable Systems And Solitons
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We briefly review the recent progress in obtaining (2+1) dimensional integrable generalizations of soliton equations in (1+1) dimensions. Then, we develop an algorithmic procedure to obtain interesting classes of solutions to these systems. In particular using a Painlevé singularity structure analysis approach, we investigate their integrability properties and obtain their appropriate Hirota bilinearized forms. We identify line solitons and from which we introduce the concept of ghost solitons, which are patently boundary effects characteristic of these (2+1) dimensional integrable systems. Generalizing these solutions, we obtain exponentially localized solutions, namely the dromions which are driven by the boundaries. We also point out the interesting possibility that while the physical field itself may not be localized, either the potential or composite fields may get localized. Finally, the possibility of generating an even wider class of localized solutions is hinted by using curved solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N J Zabusky and M D Kruskal,Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  2. C S Gardner, J M Greene, M D Kruskal and R M Miura,Phys. Rev. Lett. 19, 1095 (1967)

    Article  MATH  ADS  Google Scholar 

  3. M J Ablowitz and P A Clarkson,Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  4. M Lakshmanan (ed.),Solitons: Introduction and Applications, (Springer-Verlag, Berlin, 1988)

    Google Scholar 

  5. M Lakshmanan (ed.)Chaos, Solitons and Fractals (Special issue on Solitons in Science and Engineering: Theory and Applications)5, 2213–2656 (1995)

  6. P L Bhatnagar,Nonlinear Waves in One-Dimensional Dispersive Systems (Oxford University Press, Calcutta, 1979)

    MATH  Google Scholar 

  7. M Boiti, J J P Leon, L Martina and F Pempinelli,Phys. Lett. A132, 432 (1988)

    ADS  MathSciNet  Google Scholar 

  8. A S Fokas and P M Santini,Physica D44, 99 (1990)

    ADS  MathSciNet  Google Scholar 

  9. M J Ablowitz and A S Fokas,Stud. Appl. Math. 69, 135 (1983)

    MATH  MathSciNet  Google Scholar 

  10. A S Fokas and M J Ablowitz,Stud. Appl. Math. 69, 211 (1983)

    MATH  MathSciNet  Google Scholar 

  11. A S Fokas and M J Ablowitz,J. Math. Phys. 25, 2494 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. B G Konopelchenko,Solitons in Multidimensions (Springer-Verlag, Berlin, 1993)

    MATH  Google Scholar 

  13. V E Zakharov and S V Manakov,Funct. Anal. Appl. 19, 89 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. F Calogero,Lett. Nuovo Cimento 14, 443 (1975)

    Article  MathSciNet  Google Scholar 

  15. M Boiti, J J P Leon, M Manna and F Pempinelli,Inv. Prob. 2, 271 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. S P Novikov and A P Veselov,Physica D18, 267 (1986)

    ADS  MathSciNet  Google Scholar 

  17. A S Fokas,Inv. Prob. 10, L19 (1994)

  18. I A B Strachan,Inv. Prob. 8, L21 (1992);J. Math. Phys. 34, 243 (1993)

  19. B G Konopelchenko and C Rogers,Phys. Lett. A158, 391 (1991);J. Math. Phys. 34, 214 (1993)

    ADS  MathSciNet  Google Scholar 

  20. J J C Nimmo,Phys. Lett. A168, 113 (1992)

    ADS  MathSciNet  Google Scholar 

  21. S Chakravarty, S L Kent and E T Newman,J. Math. Phys. 36, 763 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. M Lakshmanan and R Sahadevan,Phys. Rep. 224, 1 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. M J Ablowitz, A Ramani and H Segur,J. Math. Phys. 21, 715 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. M Lakshmanan,Int. J. Bifurcation and Chaos 3, 3 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. J Weiss, M Tabor and G Carnevale,J. Math. Phys. 24, 522 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. M Daniel, M D Kruskal, M Lakshmanan and K Nakamura,J. Math. Phys. 33, 771 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. R Radha and M Lakshmanan,Inv. Problems 10, L29 (1994)

  28. R Radha and M Lakshmanan,J. Math. Phys. 35, 4746 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. R Radha and M Lakshmanan,Phys. Lett. A197, 7 (1995)

    ADS  MathSciNet  Google Scholar 

  30. R Radha and M Lakshmanan,J. Phys. A29, 1551 (1996)

    ADS  MathSciNet  Google Scholar 

  31. R Radha and M Lakshmanan,Chaos, Solitons and Fractals 8, 17 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. R Radha and M Lakshmanan,J. Math. Phys. 38, 292 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. R Radha and M Lakshmanan,J. Phys. A30, (1997) to appear

  34. R Radha, Ph.D Thesis (Bharathidasan University, 1996)

  35. Sen-yue Lou,J. Phys. A28, 7227 (1995)

    ADS  Google Scholar 

  36. J Hietarinta,Phys. Lett. A149, 113 (1990)

    ADS  MathSciNet  Google Scholar 

  37. V Dubrovsky and B G Konopelchenko,Inv. Prob. 9, 391 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmanan, M., Radha, R. Localized coherent structures of (2+1) dimensional generalizations of soliton systems. Pramana - J Phys 48, 163–188 (1997). https://doi.org/10.1007/BF02845629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02845629

Keywords

PACS Nos

Navigation