Skip to main content
Log in

Absolute measurement methods for proton beam dosimetry

  • Published:
La Rivista del Nuovo Cimento (1978-1999) Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Le système International d’Unités (SI) (1991), Bureau International des Poids et Mesures, F-92310 Sèvres, France.

  2. International Commission on Radiation Units and Measurements,Radiation Quantities and Units, ICRU Report 33, Bethesda, MD, USA (1980).

  3. International Commission on Radiation Units and Measurements,Determination of Absorbed Dose in Radiotherapy Procedures, ICRU Report 24 (Bethesda, MD, USA) 1976.

  4. Mijnheer B. J., Battermann J. J. and Wambeesie A.,What degree of accuracy is required and can be achieved in photon and neutron therapy?,Radiother. Oncol., 8 (1987) 237.

    Article  Google Scholar 

  5. Brahme A.,Accuracy requirements and quality assurance of external beam therapy with photons and electrons, Acta Oncol., Suppl.,1 (1988).

  6. Wilson R. R.,Radiological use of fast protons,Radiology,47 (1946) 487.

    Article  Google Scholar 

  7. Thornton A. F. andSuit H. D.,Current and potential clinical indications of proton irradiation, inProceedings of the 13th International Conference on Cyclotrons and their Applications (World Scientific, Singapore) 1993.

    Google Scholar 

  8. Bonnet D. E.,Current developments in proton therapy: a review,Phys. Med Biol.,38 (1993) 1371.

    Article  Google Scholar 

  9. Lennox A. J. andPetti P. L.,Hadronic radiotherapy, Fermilab Pub-94/204 (1994).

  10. Amaldi U. andSilari M. (Editors),The TERA Project and the Centre for Oncological Hadrontherapy, INFN Frascati (1994).

  11. Pedroni E. et al., The 200 MeVproton therapy project at the Paul Scherrer Institute: Conceptual design and practical realization, Med. Phys.,22 (1995) 37.

    Article  Google Scholar 

  12. Miller D. W.,A review of proton beam radiation therapy,Med. Phys.,22 (1995) 1943.

    Article  Google Scholar 

  13. Raju M. R.,Proton radiobiology, radiosurgery and radiotherapy,Int. J. Radiat. Biol.,67 (1995) 237.

    Article  Google Scholar 

  14. Scharf W. H. andChomicki O. A.,Medical accelerators in radiotherapy: past, present and future,Phys. Med.,XII (1996) 199.

    Google Scholar 

  15. Vatnisky S. M. andSiebers J. V.,Comparison of Water Calorimeter with Reference to Ionization Chamber Dosimetry in High-Energy Photon and Proton Beam, inProceedings of NPL Calorimetry Workshop 12–14 October 1994 (NPL Report, Teddington, UK) 1994, p. 115.

  16. Medin J., Andreo P., Grusell E., Mattsson O., Montelius A. andRoos M.,Ionization chamber dosimetry of proton beams using cylindrical and plane parallel chambers. N w vs. Nk ion chamber calibrations.,Phys. Med. Biol.,40 (1995) 1161.

    Article  Google Scholar 

  17. Vynckier S., Bonnett D. E. andJones D. T. L.,Code of practice for clinical proton dosimetry,Radioter. Oncol.,20 (1991) 53.

    Article  Google Scholar 

  18. American Association of Physicists in Medicine,Protocol for heavy charged-particle therapy beam dosimetry, AAPM Report No. 16, New York (1986).

  19. Comité Consultative pour les Etalons de Mesure des Rayonnements Ionisants, Section I,Report to the Comité International des Poids et Mesures (CIPM), 10th Meeting CCEMRI (I), Sévres, (1991).

  20. Metropolis N., Storm M., Turkevich A., Miller J. M. andFriedlander G.,Monte Carlo calculations on intranuclear cascades.I Low energy studies, Phys. Rev.,110 (1958) 185.

    MathSciNet  Google Scholar 

  21. Metropolis N., Storm M., Turkevich A., Miller J. M. andFriedlander G.,Monte Carlo calculations on intranuclear cascades.II High energy studies, Phys. Rev.,110 (1958) 204.

    MathSciNet  Google Scholar 

  22. Bertini H. W.,Low-energy intranuclear cascade calculations,Phys. Rev.,131 (1963) 1801.

    Article  ADS  Google Scholar 

  23. International Commission on Radiation Units and Measurements,Tissue Substitutes in Radiation Dosimetry and Measurements, ICRU Report 44, Bethesda, MD, USA (1989).

  24. Laitano R. F., Rosetti M. andFrisoni M.,Effects of nuclear interactions on energy and stopping power in proton beam dosimetry,Nucl. Instrum. Methods. A,376 (1996) 466.

    Article  ADS  Google Scholar 

  25. Laitano R. F. andRosetti M.,Mean energy calculations for proton beams in a tissue substitute and in water: preliminary results, Proton energy determinations in water and in tissue-like material, Bureau International des Poids et Mesures, CCEMRI (Section I) 13th Meeting, Sèvres, (1997).

  26. Coutrakon M., Bauman D., Lesyna D., Miller D., Nousbaum J., Slater J., Johanning J., Miranda J., De Luca P. M., Siebers J. andLudewigt B.,A prototype beam delivery system for the proton medical accelerator at Loma Linda,Med. Phys.,18 (1991) 1093.

    Article  Google Scholar 

  27. Laitano R. F. andRosetti M.,Proton energy determinations in water and in tissue-like material, Proceedings of the 6th Workshop on Heavy Particles in Biology and Medicine, ISE, Baveno, 29 September–1st October (1997) (GSI Report 97-09, D 64291 Darmstadt, Germany) 1997.

  28. Verhey L. J., Koelhler A. M., McDonald J. C., M. Goitein, I. Chang Ma, R. Schneider andWagner M.,The determination of absorbed dose in a proton beam for purposes of charged-particle radiation therapy,Rad. Res.,79 (1979) 34.

    Article  Google Scholar 

  29. Domen S. R.,An absorbed dose water calorimeter. Theory, design and performance,J. Res. NBS,88 (1982) 373.

    Google Scholar 

  30. Ross C. K., Klassen N. V. andSmith G. D.,The effects of various dissolved gases on the heat defect of water,Med. Phys.,11 (1984) 653.

    Article  Google Scholar 

  31. Domen S. R.,Advances in calorimetry for radiation dosimetry, inThe Dosimetry of Ionizing Radiation, edited byK. R. Kase, B. E. Bjangard andF. H. Attix, Vol. II (Academic Press) 1987.

  32. Ross C. K., Klassen N. V., Shortt K. R. andSmith G. D.,Water calorimetry with emphasis on the heat defect, Proceedings of the NRC Workshop on Water Calorimetry, NRC Report, Ottawa, Canada, June 1988.

  33. Laughlin J. S. andGenna S.,Calorimetric methods inRadiation Dosimetry, edited byHine G. H. andBrownell G. L. (Academic Press) 1956.

  34. Laughlin J. S. andGenna S.,Calorimetry inRadiation Dosimetry, edited byF. H. Attix andW. C. Roesch, Vol. II (Academic Press) 1966.

  35. Gunn S. R.,Radiometric calorimetry: a review,Nucl. Instrum. Methods,135 (1976) 251.

    Article  ADS  Google Scholar 

  36. Pruitt J. S., Domen S. R. andLoevinger R.,The graphite calorimeter as a standard of absorbed dose for 60Cogamma radiation,J. Res. NBS,86 (1981) 45.

    Google Scholar 

  37. Burns J. E.,Absorbed-dose calibrations in high-energy photon beams at the National Physical Laboratory: conversion procedure,Phys. Med. Biol.,39 (1994) 1955.

    Article  Google Scholar 

  38. Guerra A., Laitano R.F. andPimpinella M.,Characteristics of the absorbed-dose-to-water standard at Enea,Phys. Med. Biol.,41 (1996) 657.

    Article  Google Scholar 

  39. Domen S. R.,Convective velocity effects on a thermistor in water,J. Res. NBS,93-5 (1988) 603.

    Google Scholar 

  40. Domen S. R.,The role of water purity, convection and conduction on a new calorimeter design, inProc. NRC Workshop on Water Calorimetry, NRC Report, Ottawa, Canada (1988).

  41. Incropera F. P. andADe Witt D. P.,Fundamentals of Heat Transfer (J. Wiley, New York) 1981.

    Google Scholar 

  42. Holman J. P.,Heat transfer (McGraw Hill, New York) 1981.

    Google Scholar 

  43. Burmeister L. C.,Convective heat transfer (J. Wiley, New York) 1983.

    Google Scholar 

  44. Mc Laughlin E.,The thermal conductivity of liquids and dense gases,Chem. Rev.,64 (1964) 389.

    Article  Google Scholar 

  45. Schulz R. J. andWeinhous M.,Convection currents in a water calorimeter,Phys. Med. Biol.,30 (1985) 1093.

    Article  Google Scholar 

  46. Roos M.,The current status of water absorbed dose calorimetry in the PTB, Proceedings of the NRC Workshop on Water Calorimetry, NRC, Ottawa, Canada, June 1988.

  47. Schulz R. J., C. S. Wuu C. S. andWeinhous M. S.,The direct determination of dose-to-water using a water calorimeter,Med. Phys.,14 (1987) 790.

    Article  Google Scholar 

  48. CRC Handbook of Chemistry and Physics (Chemical Rubber Company) 1981.

  49. Domen S. R.,A sealed water calorimeter for measuring absorbed dose,J. Res. Natl. Inst. Stand. Technol.,99 (1994) 121.

    Article  Google Scholar 

  50. Klassen N. V. andRoss C. K.,Absorbed dose calorimetry using various aqueous solutions,Radiat. Phys. Chem.,38 (1991) 95.

    ADS  Google Scholar 

  51. Ross C. K. andKlassen N. V.,Water calorimetry for radiation dosimetry,Phys. Med Biol.,41 (1996) 1.

    Article  Google Scholar 

  52. Schulz R. J., Huq M. S., Venkataramanan N. andMotakabbir K. A.,A comparison of ionization-chamber and water-calorimetry dosimetry for high-energy X-rays,Med. Phys.,18 (1991) 1229.

    Article  Google Scholar 

  53. Gargioni E., Laitano R. F. Guerra A. S. andManfredotti C.,Effects of thermal conduction and convection on temperature profile in a water calorimeter for proton beams, Proceedings of the 6th Workshop on Heavy Particles in Biology and Medicine, ISE, Baveno, 29 Sept-1st Oct. (1997), GSI Rep. 97-09, D 64291 Darmstadt, Germany, 1997.

  54. Bird R. B., Stewart W. E. andLightfoot E. N.,Transport Phenomena (J. Wiley, New York) 1960.

    Google Scholar 

  55. Reddy J. O.,An Introduction to the Finite Element Method (J. Wiley, New York) 1995.

    Google Scholar 

  56. ANSYS Inc. Southpointe, 275 Technology Drive, Canonsburg PA 15317, USA.

  57. Boyd A. W., Carver M. B. andDixon R. S.,Computed and experimental product concentrations in the radiolysis of water,Radiat. Phys. Chem.,15 (1980) 177.

    Article  ADS  Google Scholar 

  58. Mozumder A. andMagee J. L.,Model of tracks of ionizing radiation for radical reaction mechanism,Radiat. Res.,20 (1966) 203.

    Article  Google Scholar 

  59. Kuppermann A.,Diffusion Kinetics in Radiation Chemistry: An Assessment, inPhysical Mechanism in Radiation Biology, edited byR. D. Cooper andR. W. Wood, USAEC, CONF-721001,Nat. Tech. Inf. Serv., US Department of Commerce (1974).

  60. Schwartz H. A.,A determination of some rate constants for the radical processes in the radiation chemistry of water,J. Phys. Chem.,66 (1962) 255.

    Article  Google Scholar 

  61. International Commission on Radiation Units and Measurements,Linear Energy Transfer, ICRU Report 16 (Bethesda MD, USA) 1970.

  62. Goodhead D. T.,Relationship of Microdosimetric Techniques to Applications in Biological Systems, inThe dosimetry of ionizing radiation, edited byK. R. Kase,B. E. Bjangard andF. X. Attix, Vol. II (Academic Press, New York) 1987.

    Google Scholar 

  63. Johns H. E. andCunningham J. R.,The Physics of Radiology, 4th edition (Charles C. Thomas Publisher, Springfield, Ill.) 1983.

    Google Scholar 

  64. Klassen N. V. andRoss C. K.,The radiation chemistry of water at high LET, Proceedings of the NRC Workshop on Water Calorimetry, NRC-29637, edited by C. K. ROSS and N. V. Klassen (1988) Ottawa, Canada.

  65. Seuntjens J., Palmans H., Verhaegen F., Denis J. M., Vynckier S. andThierens H.,Water calorimetry for clinical proton beams, Proceedings NPL Workshop on Calorimetry in Radiation Dosimetry, 12–14 October 1994 (NPL Report, Teddington, UK) 1994.

  66. Guerra A. S., Laitano R. F. andPetrocchi A.,Water calorimetry with thermistor bridge operated in DC and AC mode: comparative results, Proceedings 6th Workshop on Heavy Particles in Biology and Medicine, ISE - Baveno, 29 September–1st October (1997), GSI Report 97-09, D 64291 Darmstadt, Germany, 1997.

  67. Thomason J. G.,Linear Feedback Analysis (Pergamon Press Ltd., London) 1956.

    Google Scholar 

  68. Guerra A. S., Laitano R. F. andPetrocchi A.,Messa a punto del sistema di misura della temperatura nel calorimetro ad acqua, Rapporte sull’attività del 1° sem. 97 relativa all’esperimento ATER/R (CAL) dell’INFN, INMRI-ENEA Int. Rep. (1997).

  69. Attix F. H.,Introduction to Radiological Physics and Radiation Dosimetry (J. Wiley- Interscience, New York) 1986.

    Book  Google Scholar 

  70. Harder D.,Einfluss der Vielfachstreuung von Elektronen auf die Ionisation in gas gefüllten Hohlräumen,Biophys.,5 (1968) 157.

    Google Scholar 

  71. Dutreix J. andDutreix A.,Etude comparé d’une série de chambres d’ionisation dans les faisceaux d’electrons de 20et de 10 MeV,Biophys.,3 (1966) 249.

    Google Scholar 

  72. Johansson K. A., Mattsson L. O., Lindborg L. andSvensson H.,Absorbed-dose determination with ionization chambers in electron and photon beams with energies between 1and 50 MeV, in IAEA Publ. STI/PUB/471, vol. II (Vienna) 1978.

  73. International Commission on Radiation Units and Measurements,Radiation Dosimetry: Electron Beams with Energy between 1and 50 MeV, ICRU Report 35 (Bethesda, MD, USA) 1984.

  74. Mattsson L. O., Johansson K. A. andSvensson H.,Calibration and use of plane-parallel ionization chambers for the determination of absorbed dose in electron beams,Acta Radiol. Oncol.,20 (1981) 385.

    Article  Google Scholar 

  75. Mattsson L. O. andSvensson H.,Charge buildup effects in insulating phantom materials,Acta Radiol. Oncol.,23 (1984) 393.

    Article  Google Scholar 

  76. Boag J. W.,Ionization chambers, inRadiation Dosimetry, edited byF. H. Attix,W. C. Roesch andE. Tochilin, Vol. II (Academic Press, New York) 1966.

    Google Scholar 

  77. International Atomic Energy Agency,The use of plane-parallel ionization chambers in high energy electron and photon beams, IAEA-TRS, No. 381 (Vienna) 1997.

  78. Richardson J. E.,Effect of chamber voltage on electron build-up measurements,Radiology,62 (1954) 584.

    Article  Google Scholar 

  79. Rase S. andPohlit W.,Eine Extrapolationskammer als Standardmessgerät für energiereiche Photonen und Elektronenstrahlung,Strahlentherapie,138 (1962) 267.

    Google Scholar 

  80. Van Dyck J. andMacDonald J. C. F.,Phys. Med. Biol.,17 (1972) 52.

    Article  Google Scholar 

  81. Nordic Association of Clinical Physics,Electron beams with mean energies at the phantom surface below 15 MeV,Acta Radiol. Oncol., 20 (1981) 401.

    Google Scholar 

  82. Niatel M. T.,Etude expérimentale de l’influence de la vapeur d’eau sur l’ionisation produite dans l’air,C. R. Acad. Sci. Paris,268 (1969) 1659.

    Google Scholar 

  83. Boag J. W. andCurrant J.,Current collection and ionic recombination in small cylindrical chambers exposed to pulsed radiation,Br. J. Radiol.,53 (1980) 471.

    Article  Google Scholar 

  84. Boag J. W.,The recombination correction for an ionization chamber exposed to pulsed radiation in a “swept beam” technique,Phys. Med. Biol.,27 (1982) 201.

    Article  Google Scholar 

  85. Boag J. W.,Ionization chambers, inThe Dosimetry of Ionizing radiation, edited byK. R. Kase, B. E. Bjangard andF. H. Attix, Vol. II (Academic Press) 1987.

  86. Boutillon M. andNiatel M. T.,A study of a graphite cavity chamber for absolute exposure measurements of 60Cogamma rays,Metrologia,9 (1973) 139.

    Article  ADS  Google Scholar 

  87. Burns J. E. andBurns D. T.,Comments on “Ion recombination corrections for plane-parallel and thimble chambers in electron and photon radiations”,Phys. Med. Biol.,38 (1993) 1986.

    Article  Google Scholar 

  88. International Commission on Radiation Units and Measurements,The Dosimetry of Pulsed Radiation, ICRU Report 34 (Bethesda MD, USA) 1982.

  89. Derikum K. andRoos M.,Measurement of saturation correction factors of thimble-type ionization chambers in pulsed photon beams,Phys. Med. Biol.,38 (1993) 755.

    Article  Google Scholar 

  90. Burns J. E. andRosser K. E.,Saturation correction for the NE 2560/1 dosimeter in photon dosimetry,Phys. Med. Biol.,35 (1990) 687.

    Article  Google Scholar 

  91. Havercroft J. M. andKlevenhagen S. D.,Ion recombination corrections for plane-parallel and thimble chambers in electron and photon radiation,Phys. Med. Biol.,38 (1993) 25.

    Article  Google Scholar 

  92. Takata N. andMatiullah,Dependence of the value of m on the lifetime of ions in parallel-plate ionization chambers,Phys. Med. Biol.,36 (4) (1991) 449.

    Article  Google Scholar 

  93. Takata N.,The effects of humidity on volume recombination in ionization chambers,Phys. Med. Biol.,39 (1994) 1047.

    Article  Google Scholar 

  94. Chang K. S.,Recombination correction factors for an ionization chamber exposed to discrete patterned pulsed swept beams,Med. Phys.,20 (1993) 337.

    Article  Google Scholar 

  95. Yamamoto T., Oda K., Kobayashi H. andKawanishi M.,Dosimetry of pulsed X-rays of high exposure rate generated by an electron linear accelerator, with an ionization chamber,Nucl. Instrum. Methods,196 (1982) 469.

    Article  ADS  Google Scholar 

  96. International Commission on Radiation Units and Measurements,Average Energy Required to Produce an Ion Pair, ICRU Report 31 (Bethesda, MD, USA) 1979.

  97. Larson H.,Energy loss per ion pair for protons in various gases,Phys. Rev.,112 (1958) 1927.

    Article  ADS  Google Scholar 

  98. Denis J. M., Slypen I., Tilquin I. andMeulders J. P.,Average ionisation energy, w, for 65 MeVprotons in nitrogen., Proceedings of the II European Particle Accelerator Conference, Nice 1990, edited by P. Chauvel, A. Wambersie and P. Mandrillon (Frontiers Publisher) 1990.

  99. Hiraoka T., Kawashima K. andHoshino K.,Determination of differential W-values for proton, deuteron,3Heand 60Cogamma-ray beams in several gases.,Phys. Med. Biol.,33, Suppl.1 (1988) 131.

    Google Scholar 

  100. Delacroix S., Bridier A., Mazal A., Daures J., Ostrowsky A., Nauraye C., Kacperek A., Vynkier S., Brassard N. andHabrand J. L.,Proton dosimetry comparison involving ionometry and calorimetry,Int. J. Radiat. Oncol. Biol. Phys.,37 (1997) 711.

    Article  Google Scholar 

  101. Palmans H., Seuntjens J., Verhaegen F., Denis J. M., Vynckier S. andThierens H.,Water calorimetry and ionization chamber dosimetry in an 85 MeVclinical proton beam,Med. Phys.,23 (1996) 643.

    Article  Google Scholar 

  102. Petti P. L., Verhey L. andWilson R.,A measurement of w for 150 MeVprotons in nitrogen and argon,Phys. Med. Biol.,31 (1986) 1129.

    Article  Google Scholar 

  103. Schulz R. J., Verhey L. J., Huq M. S. andVenkataramanan N.,Water calorimeter dosimetry for 160 MeVprotons,Phys. Med. Biol.,37 (1991) 947.

    Article  Google Scholar 

  104. Siebers J. V., Vatnitski S. M., Miller D. W. andMoyers M. F.,Deduction of the air w-value in a therapeutic proton beam,Phys. Med. Biol.,40 (1995) 1339.

    Article  Google Scholar 

  105. Evans R. D.,The Atomic Nucleus (McGraw-Hill) 1955.

  106. Nahum A. E.,Water/air mass stopping power ratios for megavoltage photon and electron beams,Phys. Med. Biol.,23 (1978) 24.

    Article  Google Scholar 

  107. International Commission on Radiation Units and Measurements,Stopping Powers for Electrons and Positrons, ICRU Report 37 (Bethesda, MD, USA) 1984.

  108. International Commission on Radiation Units and Measurements,Stopping Powers and Ranges for Protons and Alpha Particles, ICRU Report 49 (Bethesda, MD, USA) 1993.

  109. Medin J. andAndreo P.,Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV),Phys. Med. Biol.,42 (1997) 89.

    Article  Google Scholar 

  110. Cumming J. B.,Monitor Reactions for High Energy Proton Beams,Annu. Rev. Nucl. Sci.,13 (1963) 26.

    Article  Google Scholar 

  111. Measday D. F.,The 12C(p,pn)11CReaction from 50to 160 MeV,Nucl. Phys.,78 (1966) 476.

    Article  Google Scholar 

  112. R. S. Tilbury,Activation Analysis with Charged Particles, U.S. Atom. Energy Commun., NAS-NS 3110 (1966).

  113. Crandall W. E., Millburn G. P., Pyle R. V. andBirnbaum W.,Phys. Rev.,101 (1956) 329.

    Article  ADS  Google Scholar 

  114. Cumming J. B., Friedlander G. andKatkoff S.,Phys. Rev.,125 (1962) 2078.

    Article  ADS  Google Scholar 

  115. Aamodt R. L., Peterson V. andPhillips R.,Phys. Rev.,88 (1952) 739.

    Article  ADS  Google Scholar 

  116. Kostjuchenko V. andNichiporov D.,Measurement of the 12C(p,pn)11CReduction from 95to 200 MeV,Appl. Radiat. Isot.,44 No. 9 (1993) 1173.

    Article  Google Scholar 

  117. Campion P. J.,The Standardization of radioisotopes by the beta-gamma coincidence method using high efficiency detectors,Int. J. Appl. Radiat. Isot.,4 (1959) 232.

    Article  Google Scholar 

  118. National Council on Radiation Protection and Measurements,A Handbook of Radioactivity Measurements Procedures, NCRP Report No. 58 (Bethesda USA) 1985.

  119. International Commission on Radiation Units and Measurements,Particle Counting in Radioactivity Measurements, ICRU Report 52 (Bethesda MD, USA) 1994.

  120. Chamberlain D., Segré E. andWiegand C.,Experiments on proton scattering from 120-345 MeV,Phys. Rev.,83 (1951) 923.

    Article  ADS  Google Scholar 

  121. Brown K. L. andToutfest G. W.,Faraday cup monitors for high-energy electron beams,Rev. Sci. Instrum.,277 (1956) 633.

    Google Scholar 

  122. Cambria R., Hérault J., Brassart N., Silari M. andChauvel P.,Proton beam dosimetry: a comparison between the Faraday cup and an ionization chamber,Phys. Med. Biol.,41 (1997) 1187.

    Google Scholar 

  123. Grusell E., Isacsson U., Montelius A. andMedin J.,Faraday cup dosimetry in a proton beam without collimation,Phys. Med. Biol.,40 (1995) 1831.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laitano, R.F. Absolute measurement methods for proton beam dosimetry. Rivista Nuovo Cimento 21, 1–58 (1998). https://doi.org/10.1007/BF02845042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02845042

Navigation