Skip to main content
Log in

An inequality associated with the uncertainty principle

  • Published:
Rendiconti del Circolo Matematico di Palermo Aims and scope Submit manuscript

Abstract

We prove\(\left\| F \right\|_{2,\Omega } \leqslant c({\rm T} \Omega )\left\| f \right\|_{A{}_T} \), whereF is the Fourier transform off,||F||2,Ω is theL 2-norm ofF on\([ - \Omega ,\Omega ],\left\| f \right\|_{A{}_T} \) is the absolutely convergent Fourier series norm for 2T-periodic functions, and

$$c(T\Omega ) = (\frac{1}{\pi }\int\limits_{ - T\Omega }^{T\Omega } {\frac{{\sin ^2 \gamma }}{{\gamma ^2 }}d\gamma } )^{1/2} $$

Analogous inequalities, depending on prolate spheroidal wave functions, are more difficult to prove and their constants are less explicit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. Barnes J., “Laplace-Fourier transformation, the foundation for quantum information theory and linear physics”Problems in analysis (in honor of S. Bochner) Princeton University Press, (1970) 157–173.

  2. Benedetto J.Spectral synthesis, Academic Press, N. Y., 1975.

    Google Scholar 

  3. Benedetto J. and Heiniig H., “Weighted Hardy spaces and the Laplace transform”, Springer Lecture Notes 992 (1983).

  4. Boas R.,Entire functions, Academic Press, N. Y., 1954.

    MATH  Google Scholar 

  5. Carlson F., “Une inégalité” (1934),Ark., Mat. Astr. Fys.,25, B1 (1937) 1–5.

    Google Scholar 

  6. Chalk J. H. H., “The optimum pulse-shape for pulse communication”Proc. Inst. Elec. Eng., London87 (1950) 88–92.

    Google Scholar 

  7. Cowling M. and Price J., “Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl-inequality” (to appear).

  8. Domar Y., “On spectral synthesis in IR2 n>=2”,Euclidean harmonic analysis, Springer Lecture Notes779 (1980) 46–72.

    MathSciNet  Google Scholar 

  9. Fuchs W., “On the magnitude of Fourier transforms”International Congress Math., Amsterdam,2 (1954) 106–107.

    Google Scholar 

  10. Hirschman. “A note on entropy”Amer. J. Math.,79 (1957) 152–156.

    Article  MATH  MathSciNet  Google Scholar 

  11. Kampé de Fériet J., “Mathematical methods used in the statistical theory of turbelence: harmonic analysis”Inst. Fluid Dynamics, U. of Maryland,1 (1950-1951) 1–108.

    Google Scholar 

  12. Landau H., Pollak H. and Slepian D. “Prolate spheroidal wave functions, Fourier analysis, and uncertainty” I–V,Bell System Tech. J.,40 (1961) 43–64,40 (1961) 65–84,41 (1962) 1295–1336,43, (1964) 3009–3058,57 (1978) 1371–1430.

    MathSciNet  Google Scholar 

  13. Oppenheim A. and Schafer R.,Digital signal processing Prentice-Hall, Engle-wood-Cliffs, N.J., 1975.

    MATH  Google Scholar 

  14. Papoulis A.,Signal analysis, McGraw-Hill, N. Y., 1977.

    MATH  Google Scholar 

  15. Plancherel M., “Intégrales de Fourier et fonctions entières” Colloque sur l'analyseharmonique, Nancy (1949) 31–43.

  16. Rudin W.,Fourier analysis on groups John Wiley and Sons, N. Y., 1962.

    MATH  Google Scholar 

  17. Weyl H.,The theory of groups and quantum mechanics (1928) Dover Publications, Inc., N. Y.

    Google Scholar 

  18. Wiener N.,The Fourier integral and certain of its applications Cambridge University Press, 1933.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by the National Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, J.J. An inequality associated with the uncertainty principle. Rend. Circ. Mat. Palermo 34, 407–421 (1985). https://doi.org/10.1007/BF02844534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02844534

Keywords

Navigation