Lichnerowicz A.,Champs spinoriels et propagateurs en relativité générale, Bull. Soc. Math. Fr.,92 (1964), 11–100.Champ de Dirac, champ de neutrino et transformations,C, P, T, sur un espace temps courbe, Ann. Inst. H. Poincaré, I, n. 3 (1964), 233–290.
MATH
MathSciNet
Google Scholar
Lichnerowicz A.,Topics on space time, Battelle rencontres, C. De Witt and J. W. Wheeler ed., Benjamin 1967.
Geroch R.,Local characterization of singularities in general relativity, J. Math. Phys.,9 (1968), 1739 etSpinor structure of Space-Times in general relativisty,11 (1970), 343.
MATH
Article
MathSciNet
Google Scholar
Dimock J.,Algebras of Local observables on a Manifold, Comm. Maths. Phys. Vol.77, n. 3 (1980), 219.
MATH
Article
MathSciNet
Google Scholar
Castagnino M.,The Quantum Equivalence Principle and Spin 1/2 massive particles, Ann. Inst. H. Poincaré, XXXV, n. 1 (1981), 55.
MathSciNet
Google Scholar
Leray J.,Hyperbolic Partial Differential Equations, I.A.S., Princeton, 1952.
Google Scholar
Hughes T., Kato T., Marsden J.,Well posed Quasilinear Second Order Hyperbolic Systems with Applications to Nonlinear Elastodynamics and Global Relativity, Arch. Rat. Mech. An. 63, n. 3 (1977), 273–294.
MATH
MathSciNet
Google Scholar
Choquet-Bruhat Y., Christodoulou D., Francaviglia M.,Cauchy data on a manifold, Ann. Inst. H. Poincaré, XXIX,3 (1978), 241–255.
MathSciNet
Google Scholar
Glassey R. T., Strauss W. A.,Conservation laws for the Classical Maxwell-Dirac and Klein Gordon-Dirac equations, J. Maths. Phys. 20, n. 3 (1979), 454–458.
Article
MathSciNet
Google Scholar
Choquet-Bruhat Y.,The Cauchy Problem, Chap. IV of «Gravitation, and Introduction to Current Research», L. Witten ed., J. Wiley, 1962.
Segal I. E.,The global Cauchy Problem for a Relativistic Scalar Field with power interaction, Bull. Soc. Math. Fr.,91 (1963), 129–135.
MATH
Google Scholar
Reed M.,Abstract non linear wave equations, Springer lecture Notes, 1976.
Moncrief V.,Global existence of Maxwell-Klein Gordon fields in (2+1)-dimensional space time, J. Maths. Phys.,21, 8 (1980), 2291–2296.
Article
MathSciNet
Google Scholar
Orsted B.,A Note on the Conformal Quasi-Invariance of the Laplacian on a Pseudo Riemannian Manifold, Letters in Math. Phys.,1, 3 (1976), 183.
MATH
Article
MathSciNet
Google Scholar
Branson T.,Conformally invariant equations on differential forms, J. Diff. Geometry (à paraître).
Penrose R.,Structure of Space Time, in Battelle Rencontres, C. De Witt and J. Wheeler ed., Benjamin 1967.
Chadam J.,Asymptotic behavior of equations for a relativistic scalar field with power interaction, Applicable Analysis,3 (1973), 377–402.
Article
MathSciNet
Google Scholar
Christodoulou D.,Solutions globales des équations de Yang et Mills, C. R. Ac. Sc. Paris, t. 293 (1981).