Advertisement

Solution globale des equations de Maxwell-Dirac-Klein-Gordon

  • Yvonne Choquet-bruhat
Article

Abstract

We prove the global existence on Minkowski space time of a solution of the Cauchy problem for the non linear system of coupled Maxwell, Dirac and Klein-Gordon equations, for small data with appropriate decay at space-like infinity. The method uses the conformal mapping of Minkowski space time onto a bounded open set of the Einstein cylinder.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lichnerowicz A.,Champs spinoriels et propagateurs en relativité générale, Bull. Soc. Math. Fr.,92 (1964), 11–100.Champ de Dirac, champ de neutrino et transformations,C, P, T, sur un espace temps courbe, Ann. Inst. H. Poincaré, I, n. 3 (1964), 233–290.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Lichnerowicz A.,Topics on space time, Battelle rencontres, C. De Witt and J. W. Wheeler ed., Benjamin 1967.Google Scholar
  3. [3]
    Geroch R.,Local characterization of singularities in general relativity, J. Math. Phys.,9 (1968), 1739 etSpinor structure of Space-Times in general relativisty,11 (1970), 343.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Dimock J.,Algebras of Local observables on a Manifold, Comm. Maths. Phys. Vol.77, n. 3 (1980), 219.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Castagnino M.,The Quantum Equivalence Principle and Spin 1/2 massive particles, Ann. Inst. H. Poincaré, XXXV, n. 1 (1981), 55.MathSciNetGoogle Scholar
  6. [6]
    Leray J.,Hyperbolic Partial Differential Equations, I.A.S., Princeton, 1952.Google Scholar
  7. [7]
    Hughes T., Kato T., Marsden J.,Well posed Quasilinear Second Order Hyperbolic Systems with Applications to Nonlinear Elastodynamics and Global Relativity, Arch. Rat. Mech. An. 63, n. 3 (1977), 273–294.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Choquet-Bruhat Y., Christodoulou D., Francaviglia M.,Cauchy data on a manifold, Ann. Inst. H. Poincaré, XXIX,3 (1978), 241–255.MathSciNetGoogle Scholar
  9. [9]
    Glassey R. T., Strauss W. A.,Conservation laws for the Classical Maxwell-Dirac and Klein Gordon-Dirac equations, J. Maths. Phys. 20, n. 3 (1979), 454–458.CrossRefMathSciNetGoogle Scholar
  10. [10]
    Choquet-Bruhat Y.,The Cauchy Problem, Chap. IV of «Gravitation, and Introduction to Current Research», L. Witten ed., J. Wiley, 1962.Google Scholar
  11. [11]
    Segal I. E.,The global Cauchy Problem for a Relativistic Scalar Field with power interaction, Bull. Soc. Math. Fr.,91 (1963), 129–135.zbMATHGoogle Scholar
  12. [12]
    Reed M.,Abstract non linear wave equations, Springer lecture Notes, 1976.Google Scholar
  13. [13]
    Moncrief V.,Global existence of Maxwell-Klein Gordon fields in (2+1)-dimensional space time, J. Maths. Phys.,21, 8 (1980), 2291–2296.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Orsted B.,A Note on the Conformal Quasi-Invariance of the Laplacian on a Pseudo Riemannian Manifold, Letters in Math. Phys.,1, 3 (1976), 183.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Branson T.,Conformally invariant equations on differential forms, J. Diff. Geometry (à paraître).Google Scholar
  16. [16]
    Penrose R.,Structure of Space Time, in Battelle Rencontres, C. De Witt and J. Wheeler ed., Benjamin 1967.Google Scholar
  17. [17]
    Chadam J.,Asymptotic behavior of equations for a relativistic scalar field with power interaction, Applicable Analysis,3 (1973), 377–402.CrossRefMathSciNetGoogle Scholar
  18. [18]
    Christodoulou D.,Solutions globales des équations de Yang et Mills, C. R. Ac. Sc. Paris, t. 293 (1981).Google Scholar

Copyright information

© Springer 1982

Authors and Affiliations

  • Yvonne Choquet-bruhat
    • 1
  1. 1.Département de MécaniqueUniversité Paris VIParis

Personalised recommendations