Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On generalized functional Nörlund methods

  • 16 Accesses

Abstract

We discuss the relations between the convergence fields of the functional Nörlund methods (N, p, q, π) and (N, πrp+p*r,q, πρ) in the ordinary and absolute case,p, q, r being suitable Lebesgue integrable functions and π, ρ∈ϱ.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Borwein D.,On products of sequences, J. London Math. Soc.,33 (1958), 352–357.

  2. [2]

    Choudhary B.,On functional Nörlund methods, Proc. Camb. Phil. Soc.,67 (1970), 47–60.

  3. [3]

    Das G.,On functional methods, J. Indian Math. Soc., (N.S.)31 (1968), 81–93.

  4. [4]

    Doetsch G.,Handbuch der Laplace-Transformation, I, Basel, 1950.

  5. [5]

    Knopp K.,Nörlund-Verfahren für Funktionen, Math. Z.,63 (1955), 39–52.

  6. [6]

    Knopp K.,—Vanderburg B.,Functional Nörlund methods, I, Rend. Circ. Mat. Palermo, (2)4 (1955), 5–32.

  7. [7]

    Kuttner B.,The generalized limit of a function, Proc. London Math. Soc., (2)47 (1941), 142–173.

  8. [8]

    Miesner W.,The convergence fields of Nörlund means, Proc. London Math. Soc., (3)15 (1965), 495–507.

  9. [9]

    Peyerimhoff A.,On convergence fields of Nörlund means, Proc. Amer. Math. Soc.,7 (1956), 335–347.

  10. [10]

    Schaper R.,Über Konvergenzfelder von verallgemeinerten Nörlundverfahren Dissertation, Kassel, 1973.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schaper, R. On generalized functional Nörlund methods. Rend. Circ. Mat. Palermo 28, 205–219 (1979). https://doi.org/10.1007/BF02844095

Download citation

Keywords

  • London Math
  • Finite Interval
  • Integral Converge
  • Ordinary Summability
  • Generalize Func