Advertisement

On generalized functional Nörlund methods

  • Ralf Schaper
Article
  • 15 Downloads

Abstract

We discuss the relations between the convergence fields of the functional Nörlund methods (N, p, q, π) and (N, πrp+p*r,q, πρ) in the ordinary and absolute case,p, q, r being suitable Lebesgue integrable functions and π, ρ∈ϱ.

Keywords

London Math Finite Interval Integral Converge Ordinary Summability Generalize Func 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Borwein D.,On products of sequences, J. London Math. Soc.,33 (1958), 352–357.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Choudhary B.,On functional Nörlund methods, Proc. Camb. Phil. Soc.,67 (1970), 47–60.zbMATHMathSciNetGoogle Scholar
  3. [3]
    Das G.,On functional methods, J. Indian Math. Soc., (N.S.)31 (1968), 81–93.Google Scholar
  4. [4]
    Doetsch G.,Handbuch der Laplace-Transformation, I, Basel, 1950.Google Scholar
  5. [5]
    Knopp K.,Nörlund-Verfahren für Funktionen, Math. Z.,63 (1955), 39–52.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Knopp K.,—Vanderburg B.,Functional Nörlund methods, I, Rend. Circ. Mat. Palermo, (2)4 (1955), 5–32.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Kuttner B.,The generalized limit of a function, Proc. London Math. Soc., (2)47 (1941), 142–173.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Miesner W.,The convergence fields of Nörlund means, Proc. London Math. Soc., (3)15 (1965), 495–507.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Peyerimhoff A.,On convergence fields of Nörlund means, Proc. Amer. Math. Soc.,7 (1956), 335–347.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Schaper R.,Über Konvergenzfelder von verallgemeinerten Nörlundverfahren Dissertation, Kassel, 1973.Google Scholar

Copyright information

© Springer 1979

Authors and Affiliations

  • Ralf Schaper
    • 1
  1. 1.Gesamthochschule KasselKassel(Germania)

Personalised recommendations