Skip to main content
Log in

Heat-shock protein 70 expression in shrimpFenneropenaeus chinensis during thermal and immune-challenged stress

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Using western immunoblotting we obtained heat-shock protein 70 (HSP70) induction data and distribution in different tissues from shrimpFenneropenaeus chinensis during thermal and immune-challenged stresses. This is probably the first report of the effects of various stressors on the expression of HSP70 in shrimp. HSP70 was prominently induced in hepatopancreas and gills, but not in muscle, eyestalk and hemolymph, when the shrimp were exposed to heat shock andVibrio anguillavium-challenged stresses. Cold shock and WSSV treatment had no significant effects on the levels of HSP70 expression in all tissues examined. HSP70 induction was greatest after 2 h exposure to heat shock stress, which was elevated after acute heat shock exposure of 10°C above ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananthan, J., A. L. Goldberg and R. Voellmy, 1986. Abnormal proteins serve as eukaryotic stress signals and trigger activation of heat shock genes.Science 232: 522–524.

    Article  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72: 248–254.

    Article  Google Scholar 

  • Bosch, T. C. G., S. M. Krylow, H. R. Bode et al., 1988. Thermotolerance and synthesis of heat shock proteins: these responses are present inHydra attenuata but absent inHydra oligetis Proc. Natl. Acad. Sci. USA.85: 7927–7931.

    Article  Google Scholar 

  • Bosch, T. C. G., K. Gellner and G. Praetzel, 1991. The stress response in freshwater polypHydra.In: B. Maresca and S. Lindquist eds, Heat Shock, Springer-Verlag, Berlin. p. 133–142.

    Google Scholar 

  • Clegg, J. S., K. R. Uhlinger, S. A. Jackson et al., 1998. Induced thermotolerance and the heat shock protein-70 family in the Pacific oysterCrassostrea gigas.Molecular Marine Biology and Biotechnology 7(1): 21–30.

    Google Scholar 

  • Craig, E. A., J. S. Weismann and A. L. Horwich, 1994. Heat shock proteins and molecular chaperones: mediators of protein conformation turnover in the cell.Cell 78: 365–372

    Article  Google Scholar 

  • Deane, E. E., S. P. Kelly, I. N. K. Chow et al., 2000. Effect of a prolactin pharmacological stimulant (sulpiride) and suppressant (bromocriptine) on heat shock protein 70 expression in silver sea bream,Sparus sarba.Fish Physiology and Biochemistry 22: 125–133.

    Article  Google Scholar 

  • Fagan, M. B. and I. L. Weissman, 1996. Sequence and characterization of two HSP70 genes in the colonial protochordate Botryllus schlosseri.Immunogenetics 44: 134–142.

    Article  Google Scholar 

  • Frydman, J., E. Nimmesgern, K. Ohtsuka et al., 1994. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones.Nature 370: 111–117.

    Article  Google Scholar 

  • Gallucci, S. and P. Matzinger, 2001. Danger signals: SOS to the immune system.Curr. Opin. Immunol. 13: 114–119.

    Article  Google Scholar 

  • Hahn, G. M. and G. C. Li, 1990. Thermotolerance, thermoresistance and thermosensitization.In: R. I. Morimoto, A. Tissieres and C. Georgopoulos ed, Stress Proteins in Biology and Medicine, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. p. 79–100.

    Google Scholar 

  • Hightower, L. E., 1980. Cultured animal cells exposed to amino acid analogues or puromyein rapidly synthesize several polypeptides.J. Cell Physiol. 102: 407–427.

    Article  Google Scholar 

  • Hightower, L. E., 1991. Heat shock, stress proteins, chaperones and proteotoxicity.Cell 66: 191–197.

    Article  Google Scholar 

  • Iwama, G. K., P. T. Thomas, R. B. Forsythe, et al., 1998. Heat shock protein expression in fish.Reviews in Fish Biology and Fisheries 8: 35–56.

    Article  Google Scholar 

  • Laemmli, U. K., 1970. Cleavage of Structural proteins during the assembly of the head of bacteriophage T4.Nature 227: 680–685.

    Article  Google Scholar 

  • Langer, T., C. Lu, H. Echols et al., 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding.Nature 356: 683–689.

    Article  Google Scholar 

  • Li, G. C., L. G. Li, Y. K. Liu et al., 1991. Thermal response in rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene.Proc. Natl. Acad. Sci. USA 88: 1681–1685.

    Article  Google Scholar 

  • Lindquist, S. and E. A. Craig, 1988. The heat-shock proteins.Annu. Rev. Genet. 22: 631–677

    Article  Google Scholar 

  • Morimoto, R. I., C. Hunt, S. Y. Huang et al., 1986. Organization, nucleotide sequence and transcription of the chicken HSP70 gene.Journal of Biological Chemistry 261: 12692–12699.

    Google Scholar 

  • Morimoto, R. I., 1993. Cells in stress: transcriptional activation of heat shock genes.Science 259: 1409–1410.

    Article  Google Scholar 

  • Murray, P. J. and R. A. Young, 1992. Stress and immunological recognition in host-pathogen interactions.J. Bacteriol. 174: 4193–4196.

    Google Scholar 

  • Parsell, D. A. and S. Lindquist, 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins.Annu. Rev. Genet. 27: 437–496.

    Article  Google Scholar 

  • Roberts, J. K. and J. L. Key, 1991. Isolation and characterization of a soybean HSP70 gene.Plant Molecular Biology 16: 671–683.

    Article  Google Scholar 

  • Rodriguez, J., V. Boulo, E. Mialhe et al., 1995. Characterization of shrimp haemocytes and plasma components by monoclonal antibodies.J. Cell Sci. 108: 1043–1050.

    Google Scholar 

  • Roux, A. F., V. T. Nguyen, J. A. Squire et al., 1994. A heat shock gene at 14q22: mapping and expression.Human Molecular Genetics 3: 1819–1822.

    Article  Google Scholar 

  • Schröder, H., T. Langer, F. U. Hartl et al., 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein.EMBO J. 12: 4137–4144.

    Google Scholar 

  • Skowyra, D., C. Georgopoulos and M. Zylicz, 1990. TheE. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner.Cell 62: 939–944.

    Article  Google Scholar 

  • Solomon, J. M., J. M. Rossi, K. Golic et al., 1991. Changes in HSP70 alter thermotolerance and heat-shock regulation inDrosophila.New Biol. 3: 1106–1120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Jianhai.

Additional information

Supported by the National Key Fundamental Research Program “Study of the Major Diseases and Resistance Mechanism of Mariculture Organisms”, NSFC, No. 30140017, and the international cooperative program “Immunaqua” by the European Commission, No. ICA4-CT-2001-10023.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhenyu, G., Chuanzhen, J. & Jianhai, X. Heat-shock protein 70 expression in shrimpFenneropenaeus chinensis during thermal and immune-challenged stress. Chin. J. Ocean. Limnol. 22, 386–391 (2004). https://doi.org/10.1007/BF02843633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02843633

Key words

Navigation