Skip to main content
Log in

Petrology, geothermobarometry and C-O-H-S fluid compositions in the environs of Rampura-Agucha Zn-(Pb) ore deposit, Bhilwara District, Rajasthan

  • Published:
Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences Aims and scope Submit manuscript

Abstract

The massive Zn-(Pb) sulfide ore body at Rampura-Agucha in Bhilwara district, Rajasthan, occurs within graphitic metapelites surrounded by garnet-biotite-sillimanite gneiss containing concordant bodies of amphibolite. These rocks and the sulfide ores have been studied to estimate the pressure, temperature and fluid composition associated with upper amphibolite facies metamorphism. Geothermobarometric calculations involving garnet-biotite and garnet-hornblende pairs, as well as sphalerite-hexagonal pyrrhotite-pyrite and garnet-plagioclase-sillimanite-quartz assemblages indicate that the most pervasive P-T condition during peak of regional metamorphism was 650°C and 6 kb, and was attained between the first and second deformations in the region. Some temperature-pressure estimates also cluster around 500°C–5.1 kb which probably represent retrograde cooling during unloading.

Consideration of devolatilization equilibria in the C-O-H-S system at the pervasive metamorphic conditions mentioned above shows that the metamorphic fluid was H2O-rich (\(X_{H_2 O} = 0.52\)) but also had a substantial component of\(CO_2 (X_{CO_2 } = 0.39)\).\(H_2 S(X_{H_2 S} = 0.043)\) and\(CH_4 (X_{CH_4 } = 0.025)\) were the other important phases in the fluid. CO (XCO = 0.002) and\(H_2 (X_{H_2 } = 0.002)\) were the minor phases in the fluid. It is probable that a part of this aqueous fluid was consumed by re-/neocrystallization of hydrous silicate phases like chlorite during the retrogressive metamorphic path, so that fluid entrapped in quartz below 450°C was rendered CO2-rich (Holleret al 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton P B and Toulmin P 1966 Phase relations involving sphalerite in the Fe-Zn-S system;Econ. Geol. 61 815–849

    Google Scholar 

  • Banno S 1988 On the sphalerite geobarometer;Geochem. Jour. 22 129–131

    Google Scholar 

  • Binns R A 1969 Ferromagnesian minerals in high grade metamorphic rock;Geol. Soc. Australia (spl. publ.) 2 323–332

    Google Scholar 

  • Bryndzia L T 1989 Sphalerite and iron sulfide phase relations in regionally metamorphosed sulfide deposits: Implications for sphalerite geobarometry;Abstr. Int. Geol. Cong. Washington 1 209–210

    Google Scholar 

  • Bryndzia L T, Scott S D and Spry P G 1988 Sphalerite and hexagonal pyrrhotite geobarometer: Experimental calibration and application to the metamorphosed sulfide ores of Broken Hill, Australia;Econ. Geol. 83 1193–1204

    Google Scholar 

  • Burnham C W, Halloway J R and Davis N R 1969 Thermodynamic properties of water to 1,000°C and 10,000 bars;Geol. Soc. Am. (spl. paper) 132 96pp

  • Chatterjee N D and Johannes W 1974 Thermal stability and standard thermodynamic properties of synthetic 2M1-Muscovite, KAl2[AlSi3O10(OH)2];Contrib. Mineral. Petrol 48 89–114

    Article  Google Scholar 

  • Cheney J T and Guidotti C V 1979 Muscovite-plagioclase equilibria in sillimanite + quartz bearing metapelites, Puzzle mountain area, northwest Maine, U.S.A.;Am. J. Sci. 279 411–434

    Article  Google Scholar 

  • Chipera S J and Perkins D 1988 Evaluation of biotite-garnet geothermometers: application to the English River subprovince, Ontario;Contrib. Mineral. Petrol. 98 40–48

    Article  Google Scholar 

  • Coleman R G, Lee D E, Beatty L B and Brannock W W 1965 Eclogites and eclogites: their differences and similarities;Geol. Soc. Am. Bull. 76 483–508

    Article  Google Scholar 

  • Craig J R and Scott S D 1974 Sulfide phase equilibria. In: Sulfide Mineralogy, Short Course Notes (ed.) P H Ribbe:Min. Soc. America csl-cs104

  • Dasgupta S, Sengupta P, Guha D and Fukuoka M 1991 A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites;Contrib. Mineral. Petrol. 109 130–137

    Article  Google Scholar 

  • Deb M 1989 Isotopic composition of carbon in sulfide ore environments in Proterozoic Aravalli-Delhi orogenic belt, northwestern India;Abstr. International Geol. Cong. Washington 1 379–380

    Google Scholar 

  • Deb M 1992 Lithogeochemistry of rocks around Rampura-Agucha massive zinc sulfide orebody, NW India-implications for the evolution of a Proterozoic ‘aulacogen’; In:Metallogeny related to tectonics of the Proterozoic mobile belts. (ed) S C Sarkar (New Delhi: Oxford and IBH Publ. Co.) 1–35

    Google Scholar 

  • Deb M and Sarkar S C 1990 Proterozoic tectonic evolution and metallogenesis in the Aravalli-Delhi orogenic complex, northwestern India;Precambrian Res. 46 115–137

    Article  Google Scholar 

  • Deb M, Thorpe R I, Cumming G L and Wagner P A 1989 Age, source and stratigraphic implications of lead isotope data for conformable sediment-hosted base metal deposits in the Proterozoic Aravalli-Delhi Orogenic belt, northwestern India;Precambrian Res. 43 1–22

    Article  Google Scholar 

  • Edwards R L and Essene E J 1988 Pressure temperature and C-O-H fluid fugacities across the amphibolite-granulite transition, northwest Adirondack Mountains, New York;J. Petrol. 29(1) 39–72

    Google Scholar 

  • Ferry J M and Spear F S 1978 Experimental calibration of partitioning of Fe and Mg between biotite and garnet;Contrib. Mineral. Petrol. 66 113–117

    Article  Google Scholar 

  • Ferry J M 1981 Petrology of graphitic sulfide-rich schists from south-central Maine: An example of desulfidation during prograde regional metamorphism;Am. Min. 66 908–930

    Google Scholar 

  • French B M 1966 Some geologic implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures;Rev. Geophysics 4 223–253

    Article  Google Scholar 

  • Froese E and Gunter A E 1976 A note on pyrrhotite-sulfur vapour equilibrium;Econ. Geol. 71 1589–1594

    Google Scholar 

  • Froese E 1977Oxidation and sulfidation reactions. Mineral. Assoc. Canada Short Course in Application of thermodynamics to petrology and ore deposits; (ed.) H J Greenwood 84–98

  • Frost B R 1979 Mineral equilibria involving mixed volatiles in a C-O-H fluid phase: the stabilities of graphite and siderite;Am. J. Sci. 279 1033–1059

    Article  Google Scholar 

  • Gandhi S M, Paliwal H V and Bhatnagar S N 1984 Geology and ore reserve estimates of Rampura-Agucha Zn-Pb deposit, Bhilwara District, Rajasthan;J. Geol. Soc. India 25 689–705

    Google Scholar 

  • Ghent E D 1975 Temperature, pressure, and mixed volatile equilibria attending metamorphism of staurolite-kyanitebearing assemblages, Esplanade range, British Columbia;Geol. Soc. Am. Bull. 86 1654–1660

    Article  Google Scholar 

  • Graham C M and Powell R 1984 A garnet-hornblende geothermometer: calibration, testing and application to the Pelona schist, southern California;J. Metm. Geol. 2 13–31

    Article  Google Scholar 

  • Groves D I, Binns R A, Barret F M and McQueen K G 1976 Application of sphalerite geobarometry and sulfur isotope geothermometry to ores of the Quemont Mine, Noranda, Quebec-a discussion;Econ. Geol. 71 949–950

    Google Scholar 

  • Guidotti C V 1985 Micas in metamorphic rocks;Reviews in Mineralogy 13 357–467

    Google Scholar 

  • Holland H D 1965 Some applications of thermochemical data to problems of ore deposits II. Mineral assemblages and the composition of ore-forming fluids;Econ. Geol. 60 1101–1166

    Google Scholar 

  • Holler W, Touret J L R and Stumpfl E F 1996 Retrograde fluid evolution at the Rampura-Agucha Pb-Zn-(Ag) deposit, Rajasthan, India;Mineral. Deposita 31 163–171

    Article  Google Scholar 

  • Hutchison M N and Scott S D 1981 Sphalerite geobarometry in the Cu-Fe-Zn-S system;Econ. Geol. 76 143–153

    Google Scholar 

  • Indares A and Martignole J 1985 Biotite-garnet geothermometry in granulite facies rocks: evaluation of equilibrium criteria;Canad. Min. 23 187–193

    Google Scholar 

  • Leake B E 1978 Nomenclature of amphiboles;Min. Mag. 42 533–565

    Article  Google Scholar 

  • Lusk J and Ford C E 1978 Experimental extension of the sphalerite geobarometer to 10 kbar;Am. Min. 63 516–519

    Google Scholar 

  • Moles N R 1983 Sphalerite composition in relation to deposition and metamorphism of the Foss stratiform Ba-Zn-Pb deposit, Aberfeldy, Scotland;Min. Mag. 47 487–500

    Article  Google Scholar 

  • Newton R C and Haselton H T 1981 Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz barometer In:Thermodynamics of Minerals and Melts; (eds) R C Newton, A Navrotsky and B J Wood (Berlin: Springer-Verlag) 131–147

    Google Scholar 

  • Ohmoto H and Kerrick D 1977 Devolatilization equilibria in graphitic systems;Am. J. Sci. 277 1013–1044

    Article  Google Scholar 

  • Poulson S R and Ohmoto H 1989 Devolatilization equilibria in graphite-pyrite-pyrrhotite-bearing pelites with application to magma-pelite interaction;Contrib. Mineral. Petrol. 101 418–425

    Article  Google Scholar 

  • Ranawat P S, Bhatnagar S N and Sharma N K 1988 Metamorphic character of Rampura-Agucha lead-zinc deposit, Rajasthan;Geol. Soc. India Mem. 7 397–410

    Google Scholar 

  • Ray J N 1982 An evaluation of the tectonic framework of Rampura-Agucha zinc-lead deposit, Bhilwara district, Rajasthan;India Minerals 34(4) 19–22

    Google Scholar 

  • Richardson F D and Jeffes J H E 1952 The thermodynamics of substances of interest in iron and steel making. III-sulfides;J. Iron and Steel Inst. (London) 171 165–175

    Google Scholar 

  • Robie R A, Hemingway B S and Fisher J R 1978 Thermodynamic properties of minerals and related substances at 298.15°K and 1 bar (105 pascals) pressure and at higher temperatures; U.S.Geol. Surv. Bull. 1452 456

    Google Scholar 

  • Ryzhenko B N and Volkov V P 1971 Fugacity coefficients of some gases in a broad range of temperatures and pressures;Geochem. Internat. 468–481

  • Scott S D 1973 Experimental calibration of the sphalerite geobarometer;Econ. Geol. 68 466–474

    Article  Google Scholar 

  • Scott S D and Barnes H L 1971 Sphalerite geothermometry and geobarometry;Econ. Geol. 66 653–669

    Google Scholar 

  • Sehgal U 1987 Petrology and geochemistry of Rampura-Agucha massive sulfide deposit, Bhilwara district, Rajasthan; Unpubl. Ph.D thesis, Delhi University 209pp

  • Sevigny J H and Ghent E D 1989 Pressure temperature and fluid composition during amphibolite facies metamorphism of graphitic metapelites, Howard ridge, British Columbia;J. Metamorphic Geol. 7 497–505

    Article  Google Scholar 

  • Stumpfl E F 1979 Manganese haloes surrounding metamorphic stratabound base metal deposits;Mineral. Deposita 14 207–217

    Article  Google Scholar 

  • Thompson A B 1976 Mineral reactions in pelitic rocks: I. Prediction of P-T-X (Fe-Mg) phase relations;Am. J. Sci. 276 401–424

    Article  Google Scholar 

  • Toulmin III P and Barton P B 1964 A thermodynamic study of pyrite and pyrrhotite;Geochim. Cosmochim. Acta 28 641–671

    Article  Google Scholar 

  • Toulmin III P, Barton P B and Wiggins I B 1991 Commentary on sphalerite geobarometer;Am. Min. 76 1038–1051

    Google Scholar 

  • Tyler I M and Ashworth J R 1982 Sillimanite-potash feldspar assemblages in graphitic pelites, Strontian area, Scotland;Contrib. Mineral. Petrol. 81 18–29

    Article  Google Scholar 

  • Waldbaum D R and Thompson J B Jr 1969 Mixing properties of sanidine crystalline solutions: IV. Phase diagrams from equations of state;Am. Min. 54 1274–1298

    Google Scholar 

  • Yund R A and Hall H T 1969 Hexagonal and monoclinic pyrrhotites;Econ. Geol. 64 420–423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb, M., Sehgal, U. Petrology, geothermobarometry and C-O-H-S fluid compositions in the environs of Rampura-Agucha Zn-(Pb) ore deposit, Bhilwara District, Rajasthan. Proc. Indian Acad. Sci. (Earth Planet Sci.) 106, 343–356 (1997). https://doi.org/10.1007/BF02843458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02843458

Keywords

Navigation