Skip to main content
Log in

Flow laws in polymineralic aggregates deformed by a combination of diffusion creep and dislocation creep

  • Published:
Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences Aims and scope Submit manuscript

Abstract

Microstructures in naturally deformed rocks in the upper crust demonstrate that creep strain in nature may be accommodated by a combination of dislocation creep, diffusion/dissolution processes and microcracking. A theoretical approach towards deriving an aggregate flow law is presented, where the strain in the constituent phases is assumed to occur by simultaneous operation of diffusive mass transfer and crystal plastic mechanisms (dislocation creep). Both uniform stress and uniform strain rate situations are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ave’Lallemant H G and Carter N L 1970 Syntectonic recrystallization of olivine and modes of flow in the upper mantle;Bull. Geol. Soc. Am. 81 2203–2220

    Article  Google Scholar 

  • Carter N L 1976 Steady state flow of rocks;Rev. Geophys. 14(3) 301–360

    Article  Google Scholar 

  • Carter N L and Ave’Lallemant H G 1970 High temperature flow of dunite and peridotite;Geol. Soc. Am. Bull. 81 2181–2202

    Article  Google Scholar 

  • Carter N L, Christie J M and Griggs D T 1964 Experimental deformation and recrystallization in quartz;J. Geol. 72 687–733

    Article  Google Scholar 

  • Carter N L and Tsenn M C 1987 Flow properties of continental lithosphere;Tectonophysics 100 27–63

    Article  Google Scholar 

  • Chopra P N and Paterson M S 1981 The experimental deformation of dunite;Tectonophysics 78 453–473

    Article  Google Scholar 

  • Chopra P N and Paterson M S 1984 The role of water in the deformation of dunite;J. Geophys. Res. 89 7861–7876

    Article  Google Scholar 

  • Coble R L 1963 A model for boundary diffusion controlled creep in polycrystalline materials;J. Appl. Phys. 34 1679–1682

    Article  Google Scholar 

  • Cox S F and Etheridge M A 1983 Crack-seal fibre growth mechanisms and their significance in the development of oriented layer silicate microstructure;Tectonophysics 92 147–170

    Article  Google Scholar 

  • Cox S F and Etheridge M A 1989 Coupled grain scale dilatancy and mass transfer during deformation at high fluid pressure: Examples from Mount Lyell, Tasmania;J. Struct. Geol. 11 147–162

    Article  Google Scholar 

  • Dell’Angello L N and Tullis J 1986 A comparison of quartz caxis preferred orientations in experimentally deformed aplites and quartzites;J. Struct. Geol. 8 683–692

    Article  Google Scholar 

  • Eliot D 1973 Diffusion flow laws in metamorphic rocks;Bull. Geol. Soc. Am. 84 2645–2664

    Article  Google Scholar 

  • Etheridge M A, Wall V J, Cox S F and Vernon R H 1984 High fluid pressure during regional metamorphism and deformation: implications for mass transport and deformation mechanism;J. Geophys. Res. 89 4344–4358

    Article  Google Scholar 

  • Groshong (Jr.) R H 1988 Low temperature deformation mechanisms and their interpretation;Bull. Geol. Soc. Am. 100 1329–1360

    Article  Google Scholar 

  • Gifkins R C 1970 Transitions in creep behaviour;J. Materials 5 156–165

    Article  Google Scholar 

  • Handy M R 1996 Flow laws for rocks containing two non-linear viscous phases: a phenomenological approach;J. Struct. Geol. 16 287–301

    Article  Google Scholar 

  • Herring C 1950 Diffusion viscosity of a polycrystalline solid;J. Appl. Phys. 21 437–445

    Article  Google Scholar 

  • Ji S and Zhao P 1993 Flow laws of multiphase rocks calculated from experimental data on the constituent phases;Earth Planet. Sci. Lett. 117 181–187

    Article  Google Scholar 

  • Knipe R J 1989 Deformation mechanisms-recognition from natural tectonites;J. Struct. Geol. 11 127–146

    Article  Google Scholar 

  • Mitra S 1976 A quantitative study of deformation mechanisms and finite strain in quartzites;Contrib. Min. Petrol 59 203–226

    Article  Google Scholar 

  • O’Hara K 1990 State of strain in mylonites from Southern Appalachians, Western Blue Ridge Province: the role of volume loss;J. Struct. Geol. 12 419–430

    Article  Google Scholar 

  • Paterson M S 1987 Problems in the extrapolation of laboratory rheological data;Tectonophysics 133 33–43

    Article  Google Scholar 

  • Ramsay J G 1980 Crack-seal mechanism of rock deformation;Nature (London)284 135–139

    Article  Google Scholar 

  • Ross J V and Lewis P D 1989 Brittle ductile transitions: semibrittle behaviour;Tectonophysics 167 75–79

    Article  Google Scholar 

  • Rutter E H 1983 Pressure solution in nature, theory and experiment;J. Geol. Soc. London 140 725–740

    Article  Google Scholar 

  • Saha D 1995 Some observations on brittle-ductile toggle;Proc. Indian Acad. Sci. (Earth Planet. Sci.)104 419–431

    Google Scholar 

  • Shea W T and Kronenberg A K 1992 Rheology and deformation mechanisms of an isotropic mica schist;J. Geophys. Res. 97(B5) 15201–15237

    Article  Google Scholar 

  • Tullis T E, Horowitz F G and Tullis J 1991 Flow laws of polyphase aggregates from end member flow laws;J. Geophys. Res. 96(B5) 8081–8096

    Article  Google Scholar 

  • Tullis J and Yund R A 1977 Experimental deformation of dry Westerly granite;J. Geophys. Res. 82 5705–5718

    Article  Google Scholar 

  • Wilks K R and Carter N L 1990 Rheology of some continental lower crustal rocks;Tectonophysics 182 57–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, D. Flow laws in polymineralic aggregates deformed by a combination of diffusion creep and dislocation creep. Proc. Indian Acad. Sci. (Earth Planet Sci.) 106, 221–224 (1997). https://doi.org/10.1007/BF02843449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02843449

Keywords

Navigation