Skip to main content
Log in

DNA sequence representation by trianders and determinative degree of nucleotides

  • Plant & Animal Sciences and Biotechnology
  • Published:
Journal of Zhejiang University Science B Aims and scope Submit manuscript

Abstract

A new version of DNA walks, where nucleotides are regarded unequal in their contribution to a walk is introduced, which allows us to study thoroughly the “fine structure” of nucleotide sequence. The approach is based on the assumption that nucleotides have an inner abstract characteristic, the determinative degree, which reflects genetic code phenomenological properties and is adjusted to nucleotides physical properties. We consider each codon position independently, which gives three separate walks characterized by different angles and lengths, and that such an object is called triander which reflects the “strength” of branch. A general method for identifying DNA sequence “by triander” which can be treated as a unique “genogram” (or “gene passport”) is proposed. The two- and three-dimensional trianders are considered. The difference of sequences fine structure in genes and the intergenic space is shown. A clear triplet signal in coding sequences was found which is absent in the intergenic space and is independent from the sequence length. This paper presents the topological classification of trianders which can allow us to provide a detailed working out signatures of functionally different genomic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V.I., Oleinik, O.A., 1979. Topology of real algebraic manifolds.Vestnik Mosk. Univ. Ser. I Mat. I Mekh.,A249:7–17.

    Google Scholar 

  • Azbel, M.Y., 1973. Random two-component one-dimensional Ising model for heteropolymer melting.Phys. Rev. Lett.,31:589–592.

    Article  Google Scholar 

  • Azbel, M.Y., 1995. Universality of DNA statistical structure.Phys. Rev. Lett.,75:168–171.

    Article  PubMed  CAS  Google Scholar 

  • Bashford, J.D., Tsohantjis, I., Jarvis, P.D., 1997. Codon and nucleotide assignments in a supersymmetric model of the genetic code.Phys. Lett.,A233:481–488.

    Article  CAS  Google Scholar 

  • Bergmann, S., Ihmels, J., Barkai, N., 2002. Self-similarity Limits of Genomic Signatures. Weizmann Inst. Science Preprint, Cond-mat/0210038, Rehovot, p. 12.

  • Bernardi, G., Olofsson, B., Filipski, J., 1985. The mosaic genome of warm-blooded vertebtates.Science,228:953–958.

    Article  PubMed  CAS  Google Scholar 

  • Berthelsen, C.L., Glazier, J.A., Skolnick, M.H., 1992. Global fractal dimension of human DNA sequences treated as pseudorandom walks.Phys. Rev. A45:8902–8913.

    Article  CAS  Google Scholar 

  • Bhry, T., Cziryk, A., Vicsek, T., Major, B., 1998. Application of vector space techniques to DNA.Fractals,6:205–210.

    Article  Google Scholar 

  • Buldyrev, S.V., Dokholyan, N.V., Goldberger, A.L., Havlin, S., Peng, C.K., Stanley, H.E., Viswanathan, G.M., 1998. Analysis of DNA sequences using methods of statistical physics.Physica,A249:430–438.

    CAS  Google Scholar 

  • Bulmer, M., 1987. A statistical analysis of nucleotide sequences of introns and exons in human genes.Mol. Biol. Evol.,4:395–405.

    PubMed  CAS  Google Scholar 

  • Cebrat, S., Dudek, M.R., 1998. The effect of DNA phase structure on DNA walks.Eur. Phys. J.,3:271–276.

    Article  CAS  Google Scholar 

  • Dudek, M., Cebrat, S., Kowalczuk, M., Mackiewicz, P., Nowicka, A., Mackiewicz, D., Dudkiewicz, M., 2002. Information Weights of Nucleotides in DNA Sequences. Inst. Microbiology Preprint, Cond-mat/0301371, Wroclaw, p. 8.

  • Duplij, D., Duplij, S., 2000. Symmetry analysis of genetic code and determinative degree.Biophysical Bull. Kharkov Univ.,488:60–70.

    Google Scholar 

  • Duplij, D., Duplij, S., 2001. Determinative degree and nucleotide content of DNA strands.Biophysical Bull. Kharkov Univ.,525:86–92.

    CAS  Google Scholar 

  • Duplij, D., Duplij, S., Chashchin, N., 2000. Symmetric properties of genetic code.Biopolymers and Cell,16:449–454.

    Google Scholar 

  • Fickett, J.W., Torney, D.C., Wolf, D.R., 1992. Base compositional structure of genomes.Genomics,13:1056–1064.

    Article  PubMed  CAS  Google Scholar 

  • Findley, G.L., Findley, A.M., McGlynn, S.P., 1982. Symmetry characteristics of the genetic code.Proc. Natl. Acad. Sci. USA,79:7061–7065.

    Article  PubMed  CAS  Google Scholar 

  • Forger, M., Sachse, S., 1998. Lie Superalgebras and the Multiplet Structure of the Genetic Code I: Codon Representations. Inst. de Mat. e Estat, Preprint, Math-ph/9808001, Sao Paulo, p. 23.

  • Francino, M.P., Ochman, H., 1997. Strand asymmetries in DNA evolution.Trends Genet.,13:240–245.

    Article  PubMed  CAS  Google Scholar 

  • Frappat, L., Sciarrino, A., Sorba, P., 1998. A crystal base for the genetic code.Phys. Lett. A250:214–221.

    Article  CAS  Google Scholar 

  • Gates, M.A., 1985. Simpler DNA sequence representations.Nature,316:219.

    Article  PubMed  CAS  Google Scholar 

  • Govorun, D.N., Danchuk, V.D., Mishchuk, Y.R., Kondratyuk, I.V., Radomsky, N.F., Zheltovsky, N.V., 1992. AM1 calculation of the nucleic acid bases structure and vibrational spectra.J. Mol. Structure,267:99–103.

    Article  CAS  Google Scholar 

  • Hamori, E., 1985. Novel DNA sequence representations.Nature,314:585–586.

    Article  PubMed  CAS  Google Scholar 

  • Hornos, J.E.M., Hornos, Y.M.M., 1993. Model for the evolution of the genetic code.Phys. Rev. Lett.,71:4401–4404.

    Article  PubMed  CAS  Google Scholar 

  • Karasev, V.A., 1976. Rhombic version of genetic vocabulary based on complementary of encoding nucleotides.Vest. Leningr. Univ.,1:93–97.

    Google Scholar 

  • Karasev, V.A., Sorokin, S.G., 1997. Topological structure of the genetic code.Genetika,33:744–751.

    PubMed  CAS  Google Scholar 

  • Kauffman, L.H., 1991. Khots and Physics. World Sci., Singapore.

    Google Scholar 

  • Kowalczuk, M., Mackiewicz, P., Mackiewicz D., 2001a. DNA asymmetry and replicational mutational pressure.J. Appl. Genet.,42:553–577.

    PubMed  CAS  Google Scholar 

  • Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Nowicka, A. Dudkiewicz, M., Dudek, M.R., Cebrat, S., 2001b. High correlation between the turnover of nucleotides under mutational pressure and the DNA composition.BMC evolutionary biology,17:1–13.

    Google Scholar 

  • Lewin, B., 1983. Genes. Wiley and Sons. New York.

    Google Scholar 

  • Lobry, J.R., 1996. A simple vectorial representation of DNA sequences for the detection of replication origins in bacteria.Biochimie,78:323–326.

    Article  PubMed  CAS  Google Scholar 

  • Luo, L., Lee, W., Jia, L., Ji, F., Tsai, L., 1998. Statistical correlation of nucleotides in a DNA sequence.Phys. Rev. E58:861–871.

    CAS  Google Scholar 

  • Maslov, S.Y., 1981. On the nature of biological code and its possible evolution.Biophysics (Moscow),26:632–635.

    CAS  Google Scholar 

  • Nakamura, Y., Gojobori, T., Ikemura, T., 2000. Codon usage tabulated from international DNA sequence databases: Status for the year 2000.Nucl. Acds. Res.,28:292.

    Article  CAS  Google Scholar 

  • Nieselt-Struwe, K., 1997. Graphs in sequence spaces: A review of statistical geometry.Biophys. Chem.,66:111–131.

    Article  PubMed  CAS  Google Scholar 

  • Petrovskiy, I.G., 1938. On the topology of real plane algebraic curves.Ann. Math.,39:189–209.

    Article  Google Scholar 

  • Ratner, V.A., 1985. Structure and evolution of the genetic code.Itogi Nauki i Tekhniki Ser. Mol. Biol.,21:158–197.

    Google Scholar 

  • Rokhlin, V.A., 1974. Complex orientation of real algebraic curves.Func. Anal. Appl.,8:71–75.

    Article  Google Scholar 

  • Rumer, U.D., 1968. Sistematics of codons in the genetic code.DAN SSSR,183:225–226.

    CAS  Google Scholar 

  • Rumer, U.D., 1969. On codon sistematics in the genetic code.DAN SSSR,187:937–938.

    CAS  Google Scholar 

  • Rumer, U.D., 2000. Genetic code as a system.Soros Educational J.,6:15–22.

    Google Scholar 

  • Schneider, B., Berman, H.B., 1995. Hydration of DNA bases is local.Biophysical J.,69:2661–2669.

    Article  CAS  Google Scholar 

  • Singer, M., Berg, P., 1991. Genes and Genomes. University Science Books, Mill Valley.

    Google Scholar 

  • Skiena, S., 1990. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Addison-Wesley, Reading.

    Google Scholar 

  • Sponer, J., Leszczynski, J., Vetterl, V., Hobza, P., 1996. Base stacking and hydrogen bonding in protonated cytosine dimer: The role of molecular ion-dipole and induction interactions.J. Biomolecular Structure and Dynamics,13:695–705.

    CAS  Google Scholar 

  • Stent, G., Kalindar, R., 1981. Molecular Genetics. Mir, Moscow, p. 487.

    Google Scholar 

  • Sueoka, N., 1995. Intrastrand parity rules of dna base composition and usage biases in synonymous codons.J. Mol. Evol.,40:318–325.

    Article  PubMed  CAS  Google Scholar 

  • Sukhodolec, V.V., 1985. A sence of the genetic code: Reconstruction of the prebiologocal evolutin stage.Genetika,21:1589–1599.

    Google Scholar 

  • Torney, D.C., Whittaker, C.C., Xie, G., 1999. The statistical properties of human coding sequences.J. Mol. Biol.,286:1461–1469.

    Article  PubMed  CAS  Google Scholar 

  • Turaev, V.G., 1994. Quantum Invariants of Knots and 3-Manifolds. W. de Greuter, Berlin.

    Google Scholar 

  • Wu, C., 1991. DNA strand asymmetry.Nature,352:114.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z.B., 2002. Self-similarity limits of genomic signatures. Inst. Mechanics Preprint, Cond-mat/0212091, Beijing, p. 12.

  • Yagi, M., Takeshima, Y., Wada, H., Nakamura, H., Matsuo, M., 2003. Two alternative exons can result from activation of the cryptic splice acceptor site deep within intron 2 of the dystrophin gene in a patient with as yet asymptomatic dystrophinopathy.Hum. Genet. 267:164–170.

    Google Scholar 

  • Yčac, M., 1969. The Biological Code. North-Holland, Amsterdam.

    Google Scholar 

  • Zhang, C.T., 1997. A symmetrical theory of DNA sequences and its applications.J. Theor. Biol.,187:297–306.

    Article  PubMed  CAS  Google Scholar 

  • Zheltovsky, N.V., Samoilenko, S.A., Govorun, D.N., 1989. In Spectroscopy of Biological Molecules. Societa Editrice Esculapio. Bologna, p. 159–172.

    Google Scholar 

  • Ziegler, G.M., 1995. Lectures on Polytopes. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diana, D., Steven, D. DNA sequence representation by trianders and determinative degree of nucleotides. J. Zheijang Univ.-Sci. B 6, 743–755 (2005). https://doi.org/10.1007/BF02842433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02842433

Key words

Document code

CLC number

Navigation