Estuaries and Coasts

, Volume 30, Issue 4, pp 710–724 | Cite as

Dissolved nutrient fluxes through a sandy estuarine beachface (Cape Henlopen, Delaware, U.S.A.): Contributions from fresh groundwater discharge, seawater recycling, and diagenesis

Article

Abstract

The sandy beachface at Cape Henlopen, Delaware, receives dissolved nutrient inputs from fresh upland groundwater and estuarine seawater and exports nutrients through intertidal and submarine groundwater discharge. The discharge of brackish beachface waters indicates that there must be additional diagenetic nutrient sources and sinks within the porous beachface aquifer. At some times of the year, diagenetic processes within the beachface remove nitrate from waters draining the beachface consistent with the stoichiometry of either denitrification or dissimilatory nitrate reduction to ammonium. Up to 50–100% of the nitrate load from the upland groundwaters is apparently reduced to N2O/N2 gas or ammonium during these periods. At other times, ammonium and nitrate are added to beachface waters consistent with the stoichiometry of organic matter remineralization and nitrification. Dissolved reactive phosphorus and silica are similarly consumed and produced by beachface processes at different times of the year, presumably by adsorption or desorption. Infiltration of reactive estuarine particles may be an additional source of nutrients and carbon that supports the diagenetic activity in the beachface aquifer. These observations suggest that sandy beachfaces are biogeochemically reactive systems that can serve as sources, sinks, and temporary reservoirs of nutrients to support the primary and secondary production of the adjacent intertidal zone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, A. E., M. G. Booth, M. E. Frischer, P. G. Verity, J. P. Zehr, andS. Zani. 2001. Diversity and detection of nitrate assimilation genes in marine bacteria.Applied and Environmental Microbiology 67:5343–5348.CrossRefGoogle Scholar
  2. An, S. andW. S. Gardner. 2002. Dissimilatoiy nitrate reductions to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas).Marine Ecology Progress Series 237:41–50.CrossRefGoogle Scholar
  3. Ataie-Ashtiani, B., R. E. Volker, andD. A. Lockington. 1999. Tidal effects on sea water intrusion in unconfined beaches.Journal of Hydrology 216:17–31.CrossRefGoogle Scholar
  4. Bock, M. J. andD. C. Miller. 1995. Storm effects on particulate food resources on an intertidal sandflat.Journal of Experimental Marine Biology and Ecology 187:81–101.CrossRefGoogle Scholar
  5. Boehm, A. B., A. Payton, G. G. Shellenbarger, andK. A. Davis. 2006. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone.Continental Shelf Research 26:269–282.CrossRefGoogle Scholar
  6. Brunet, R. C. andL. J. Garcia-Gil. 1996. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments.FEMS Microbiology Ecology 21:131–138.CrossRefGoogle Scholar
  7. Burnett, W. C., H. Bokuniewicz, M. Huettel, W. S. Moore, andM. Taniguchi. 2003. Groundwater and pore water inputs to the coastal zone.Biogeochemistry 66:3–33.CrossRefGoogle Scholar
  8. Bussman, I., P. R. Dando, S. J. Niven, andE. Suess. 1999. Groundwater seepage in the marine environment: Role for mass flux and bacterial activity.Marine Ecology Progress Series 178: 169–177.CrossRefGoogle Scholar
  9. Canfield, D. E., E. Kristensen, andB. Thamdrup. 2005. Aquatic Geomicrobiology. Advances in Marine Biology, Volume 48. Elsevier, Amsterdam.Google Scholar
  10. Dale, R. K. 2006. Salinity, temperature, and macrofaunal communities in groundwater seeps. M.S. Thesis, University of Delaware, Lewes, Delaware.Google Scholar
  11. Dale, R. K. andD. C. Miller. 2007. Spatial and temporal patterns of salinity and temperature in an intertidal groundwater seep.Estuarine, Coastal, and Shelf Science 72:283–298.CrossRefGoogle Scholar
  12. Dalsgaard, T., B. Thamdrup, andD. E. Canfield. 2005. Anaerobic ammonium oxidation (anammox) in the marine environment.Research in Microbiology 156:457–464.CrossRefGoogle Scholar
  13. Davis, C. C., H. W. Chen, andM. Edwards. 2002. Modeling silica sorption to iron hydroxide.Environmental Science and Technology 36:582–587.CrossRefGoogle Scholar
  14. D’Elia, C. F., P. A. Steudler, andN. Corwin. 1977. Determination of total nitrogen in aqueous samples using persulfate digestion.Limnology and Oceanography 22:760–764.Google Scholar
  15. Destouni, G. andC. Prieto. 2003. On the possibility for generic modeling of submarine groundwater discharge.Biogeochemistry 66:171–186.CrossRefGoogle Scholar
  16. Dillow, J. J. A. and E. A. Greene. 1999. Groundwater discharge and nitrate loading to the coastal bays of Maryland. United States Geological Survey, Report of Investigations no. 99-4167. Reston, Virginia.Google Scholar
  17. Engström, P., T. Dalsgaard, S. Hulth, andR. C. Aller. 2005. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments.Geochimica et Cosmochimica Acta 69:2057–2065.CrossRefGoogle Scholar
  18. Fetter, C. W. 1994. Applied Hydrogeology, 3rd edition. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  19. Gehlen, M. andW. van Raaphorst. 2002. The role of adsorption-desorption surface reactions in controlling the interstitial Si(OH)4 concentrations and enhancing Si(OH)4 turnover in shallow shelf seas.Continental Shelf Research 22: 1529–1547.CrossRefGoogle Scholar
  20. Grasshoff, K. andJ. Johansen. 1972. A new sensitive and direct method for the automatic determination of ammonia in seawater.Journal de Conseil, Conseil International pour l’Exploration de la Mer 34:516–521.Google Scholar
  21. Hansen, H. C. B., B. Rabenlange, K. Raulundrasmussen, andO. K. Borggaard. 1994. Monosilicate adsorption by ferrihydrite and goethite at pH 3-6.Soil Science 158:40–46.CrossRefGoogle Scholar
  22. Hays, R. L. 2005. Groundwater discharge and associated nutrient fluxes to the Delaware Bay at Cape Henlopen, Delaware. M.S. Thesis, University of Delaware, Lewes, Delaware.Google Scholar
  23. Hays, R. L. andW. J. Ullman. 2007. Direct determination of total and fresh groundwater discharge and nutrient loads from a sandy beachface at low tide (Cape Henlopen, Delaware, U.S.A.).Limnology and Oceanography 52:240–247.CrossRefGoogle Scholar
  24. Herbert, R. A. 1999. Nitrogen cycling in coastal marine ecosystems.FEMS Microbiology Reviews 23:563–590.CrossRefGoogle Scholar
  25. Herbert, R. A. andD. B. Nedwell. 1990. Role of environmental factors in regulating nitrate respiration in intertidal sediments, p. 77–90.In N. P. Revsbech and J. Sørensen (eds.), Denitrification in Soil and Sediment, FEMS Symposium Series 56. Plenum, New York.Google Scholar
  26. Huettel, M. andA. Rusch. 2000. Transport and degradation of phytoplankton in permeable sediment.Limnology and Oceanography 45:534–549.Google Scholar
  27. Johannes, R. E. 1980. The ecological significance of the submarine discharge of groundwater.Marine Ecology Progress Series 3:365–373.CrossRefGoogle Scholar
  28. Johannes, R. E. andC. J. Hearn. 1985. The effect of submarine groundwater discharge on nutrient and salinity regimes in a coastal lagoon off Perth, Western Australia.Estuarine, Coastal, and Shelf Science 21:789–800.CrossRefGoogle Scholar
  29. Karrh, R. R. andD. C. Miller. 1996. Effect of flow and sediment transport on feeding rate of a surface-deposit feeder,Saccoglossus kowalevskii.Marine Ecology Progress Series 130:125–134.CrossRefGoogle Scholar
  30. Kashef, A.-A. I. 1983. Harmonizing Ghyben-Herzberg interface with rigorous solutions.Ground Water 21:153–159.CrossRefGoogle Scholar
  31. Kawabe, M., J. H. Sharp, K.-C. Wong, and M. E. Lebo. 1988. Oceanographic Data Report Number 8. Density profiles from the Delaware Estuary, October 1986–September 1988. University of Delaware, Delaware Sea Grant College Program Report DEL-SG-07-90. Newark, Delaware.Google Scholar
  32. Kirchman, D. L. 2000. Uptake and regeneration of inorganic nutrients by marine heterotrophic bacteria, p. 261–288. In D. L. Kirchman (ed.), Microbial Ecology of the Oceans. Wiley, New York.Google Scholar
  33. Krom, M. D. andR. A. Berner. 1980. Adsorption of phosphate in anoxic marine sediments.Limnology and Oceanography 25:797–806.Google Scholar
  34. Laverman, A. M., P. Van Capellen, D. van Rotterdam-Los, C. Pallud, andJ. Abell. 2006. Potential rates and pathways of nitrate reduction in coastal sediments.FEMS Microbial Ecology 58:179–192.CrossRefGoogle Scholar
  35. Li, L., D. A. Barry, F. Stagnitti, andJ.-Y. Parlange. 1999. Submarine groundwater discharge and associated chemical input to a coastal sea.Water Resources Research 35:3253–3259.CrossRefGoogle Scholar
  36. Maurmeyer, E. M. 1974. Analysis of shortand long-term elements of coastal change in a simple spit system: Cape Henlopen, Delaware. M.S. Thesis, University of Delaware, Newark, Delaware.Google Scholar
  37. Meyer, S. 1975. Data Analysis for Scientists and Engineers, 1st edition. Wiley, New York.Google Scholar
  38. Michalopoulos, P. andR. C. Aller. 2004. Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay formation, and storage.Geochimica et Cosmochimica Acta 68:1061–1085.CrossRefGoogle Scholar
  39. Miller, D. C., M. J. Bock, andE. J. Turner. 1992. Deposit and suspension feeding in oscillatory flow and sediment fluxes.Journal of Marine Research 50:489–520.CrossRefGoogle Scholar
  40. Miller, D. C. andW. J. Ullman. 2004. Ecological consequences of groundwater discharge to Delaware Bay, United States.Ground Water 42:959–970.CrossRefGoogle Scholar
  41. Moore, W. S. 1999. The subterranean estuary: A reaction zone of groundwater and seawater.Marine Chemistry 65:111–125.CrossRefGoogle Scholar
  42. Portnoy, J. W., B. L. Nowicki, C. T. Roman, andD. W. Urish. 1998. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary.Water Resources Research 34:3095–3104.CrossRefGoogle Scholar
  43. Ray, A. J. 1989. Influence of sediment dynamics and deposit feeding on benthic microalgae. M.S. Thesis, University of Delaware, Lewes, Delaware.Google Scholar
  44. Reay, W. G., D. L. Gallagher, andG. M. Simmons. 1992. Ground water discharge and its impact on surface water quality in a Chesapeake Bay inlet.Water Research Bulletin 28:1121–1134.Google Scholar
  45. Rosenfeld, J. K. 1979. Ammonium adsorption in nearshore anoxic sediments.Limnology and Oceanography 24:356–364.Google Scholar
  46. Rusch, A. andM. Huettel. 2000. Advective particle transport into permeable sediments—evidence from experiments in an intertidal sandflat.Limnology and Oceanography 45:525–533.CrossRefGoogle Scholar
  47. Rysgaard, S., P. Thastum, T. Dalsgaard, P. B. Christensen, andN. P. Sloth. 1999. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments.Estuaries 22:21–30.CrossRefGoogle Scholar
  48. Santoro, A. E., A. B. Boehm, andC. A. Francis. 2006. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer.Applied and Environmental Microbiology 72:2102–2109.CrossRefGoogle Scholar
  49. Seitzinger, S. P. 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance.Limnology and Oceanography 33:702–724.CrossRefGoogle Scholar
  50. Sharp, J. H. 1988. Trends in nutrient concentrations in the Delaware Estuary, p. 78–92.In S. K. Majumdar, E. W. Miller, and L. E. Sage (eds.), Ecology and Restoration of the Delaware River Basin. The Pennsylvania Academy of Science, Pennsylvania, Philadelphia.Google Scholar
  51. Sharp, J. H., C. H. Culberson, andT. M. Church. 1982. The chemistry of the Delaware Estuary: General considerations.Limnology and Oceanography 27:1015–1028.Google Scholar
  52. Sharp, J. H., J. R. Pennock, T. M. Church, J. M. Tramontano, andL. A. Cifuentes. 1984. The estuarine interaction of nutrients, organics, and metals: A case study in the Delaware Estuary, p. 241–257.In V. S. Kennedy (ed.), The Estuary as a Filter. Academic Press, New York.Google Scholar
  53. Shaw, T. J. 2003. Biogeochemical processes in coastal aquifers and permeable sediments.Aquatic Geochemistry 9:165–169.CrossRefGoogle Scholar
  54. Slomp, C. P. andP. Van Cappellen. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: Controls and potential impact.Journal of Hydrology 295: 64–86.CrossRefGoogle Scholar
  55. Solorzano, L. andJ. H. Sharp. 1980a. Determination of total dissolved phosphorus and particulate phosphorus in natural waters.Limnology and Oceanography 25:754–758.Google Scholar
  56. Solorzano, L. andJ. H. Sharp. 1980b. Determination of total dissolved nitrogen and particulate nitrogen in natural waters.Limnology and Oceanography 25:751–754.Google Scholar
  57. Strickland, J. D. H. andT. R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd edition. Fisheries Research Board of Canada, Ottawa, Canada.Google Scholar
  58. Stumm, W. andJ. J. Morgan. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edition. Wiley, New York.Google Scholar
  59. Suzumura, M., S. Ueda, andE. Sumi. 2000. Control of phosphate concentration through adsorption and desorption processes in groundwater and seawater mixing at sandy beaches in Tokyo Bay, Japan.Journal of Oceanography 56:667–673.CrossRefGoogle Scholar
  60. Talbot, J. M., K. D. Kroeger, A. Rago, M. C. Allen, andM. A. Charette. 2003. Nitrogen flux and speciation through the subterranean estuary of Waquoit Bay, Massachusetts.Biological Bulletin 205:244–245.CrossRefGoogle Scholar
  61. Testa, J. M., M. A. Charette, E. R. Sholkovitz, M. C. Allen, A. Rago, andC. W. Herbold. 2002. Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts.Biological Bulletin 203:255–256.CrossRefGoogle Scholar
  62. Trefry, M. G., T. J. A. Svensson, andG. B. Davis. 2007. Hypoaigic influences on groundwater flux to a seasonally saline river.Journal of Hydrology 335:330–353.CrossRefGoogle Scholar
  63. Uchiyama, Y., K. Nadaoka, P. Rölke, K. Adachi, andH. Yagi. 2000. Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach.Water Resources Research 36: 1467–1479.CrossRefGoogle Scholar
  64. Ueda, S., C.-S. U. Go, M. Suzumura, andE. Sumi. 2003. Denitrification in a seashore sandy deposit influenced by groundwater discharge.Biogeochemistry 63:187–205.CrossRefGoogle Scholar
  65. Ullman, W. J., B. Chang, D. C. Miller, andJ. A. Madsen. 2003. Groundwater mixing, nutrient diagenesis and discharges across a sandy beachface, Cape Henlopen, Delaware (U.S.A.).Estuarine, Coastal, and Shelf Science 57:539–552.CrossRefGoogle Scholar
  66. Valiela, I., K. Forman, M. Lamontagne, D. Hersh, J. Costa, P. Peckol, B. Demeo-Anderson, C. D’Avanzo, M. Babione, C.-H. Sham, J. Brawley, andK. Lajtha. 1992. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts.Estuaries 15:443–457.CrossRefGoogle Scholar
  67. Vempati, R. K. andR. H. Loeppert. 1989. Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite.Clays and Clay Minerals 37:273–279.CrossRefGoogle Scholar
  68. Volk, J. A., K. B. Savidge, J. R. Scudlark, A. S. Andres, andW. J. Ullman. 2006. Nitrogen loads through baseflow, stormflow, and underflow form the watershed to Rehoboth Bay, Delaware.Journal of Environmental Quality 35:1742–1755.CrossRefGoogle Scholar
  69. Wehmiller, J. F., H. A. Stecher, III, L. L. York, and I. Friedman. 2000. The thermal environment of fossils: Effective ground temperatures (1994–1999) at aminostratigraphic sites, U.S. Atlantic coastal plain, p. 219–250.In G. A. Goodfriend, M. J. Collins, M. L. Fogel, S. A. Macko, and J. F. Wehmiller (eds.), Perspectives in Amino Acid and Protein Geochemistry. Oxford, New York.Google Scholar
  70. Zektser, I. S. andH. A. Loaiciga. 1993. Groundwater fluxes in the global hydrologic cycle: Past, present and future.Journal of Hydrology 144:405–427.CrossRefGoogle Scholar
  71. Zipperle, A. andK. Reise. 2005. Freshwater springs on intertidal sand flats cause a switch in dominance among polychaete worms.Journal of Sea Research 54:143–150.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Coastal Planning and Engineering Inc. (CPE). 2005. unpublished data. Littoral Transport Evaluation at the Lewes Ferry Terminal and Adjacent Areas. Report prepared for Delaware Department of Natural Resources and Environmental Control and Delaware River and Bay Authority, Coastal Planning and Engineering Inc., Boca Raton, Florida. Report Obtained from Anthony Pratt, Division of Soil and Water Conservation, Department of Natural Resources and Environmental Control, 89 Kings Highway, Dover, Delaware 19901.Google Scholar
  2. Sadler, M. personal communication. Division of Soil and Water Conservation, Department of Natural Resources and Environmental Control, 89 Kings Highway, Dover, Delaware 19901.Google Scholar

Copyright information

© Estuarine Research Federation 2007

Authors and Affiliations

  1. 1.College of Marine and Earth StudiesUniversity of DelawareLewes

Personalised recommendations