Skip to main content
Log in

A note on the assumptions made while computing the postseismic lithospheric deformation

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The postseismic lithospheric deformation is usually explained as viscoelastic relaxation of the coseismic stresses. In general, for computing the postseismic deformation, the shear modulus (μ) is relaxed, keeping either the bulk modulus (k) or the La’me parameter (A) fixed. It is shown that the two assumptions yield significantly different results. The assumptionk = const. implies that the medium behaves like an elastic body for dilatational changes which can be justified on physical grounds, but such a justification cannot be given in the case of the assumption λ = const.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonafede M, Dragoni M and Quareni F 1986 Displacement and stress fields produced by a centre of dilation and by a pressure source in a viscoelastic half-space;Geophys. J. R. Astron. Soc. 87 455–485

    Article  Google Scholar 

  • Cohen S C 1980 Postseismic viscoelastic surface deformation and stress-1. Theoretical considerations, displacement and strain calculations;J. Geophys. Res. 85 3131–3150

    Article  Google Scholar 

  • Cohen S C 1982 A multilayer model of time dependent deformation following an earthquake on a strike slip fault;J. Geophys. Res. 87 5409–5421

    Article  Google Scholar 

  • Dragoni M and Magnanensi C 1989 Displacement and stress produced by a pressurized, spherical magma chamber, surrounded by a viscoelastic shell;Phys. Earth Planet. Int. 56 316–328

    Article  Google Scholar 

  • Iwasaki T 1985 Quasi-static deformation due to a dislocation source in a Maxwellian viscoelastic earth model;J. Phys. Earth 33 21–43

    Article  Google Scholar 

  • Iwasaki T 1986 Displacement, strain and stress within a viscoelastic half-space due to a rectangular fault;J. Phys. Earth 34 371–396

    Article  Google Scholar 

  • Iwasaki T and Matsu’ura M 1981 Quasi-static strains and tilts due to faulting in a layered half-space with an intervenient viscoelastic layer;J. Phys. Earth 29 499–518

    Article  Google Scholar 

  • Iwasaki T and Matsu’ura M 1982 Quasi-static crustal deformations due to a surface load; Rheological structure of the earth’s crust and upper mantle;J. Phys. Earth 30 469–508

    Article  Google Scholar 

  • Ma X Q and Kusznir N J 1994a Effects of rigidity layering, gravity and stress relaxation on 3-D subsurface fault displacement fields;Geophys. J. Int. 118 201–220

    Article  Google Scholar 

  • Ma X Q and Kusznir N J 1994b Coseismic and postseismic subsurface displacements and strains for a vertical strike-slip fault in a three-layer elastic medium;Pure Appl. Geophys. 142 687–709

    Article  Google Scholar 

  • Ma X Q and Kusznir N J 1995 Coseismic and postseismic subsurface displacements and strains for a dip-slip normal fault in a three-layer elastic-gravitational medium;J. Geophys. Res. 100 12, 813–12, 828

    Article  Google Scholar 

  • Malosh H J and Raefsky A 1983 An elastic response of the Earth to a dip-slip earthquake;J. Geophys. Res. 88 515–526

    Article  Google Scholar 

  • Matsu’ura M and Tanimoto T 1980 Quasi-static deformations due to an inclined rectangular fault in a viscoelastic halfspace;J. Phys. Earth 28 103–118

    Article  Google Scholar 

  • Matsu’ura M, Tanimoto T and Iwasaki T 1981 Quasi-static displacements due to faulting in a layered half-space with an intervenient viscoelastic layer;J. Phys. Earth 29 23–54

    Article  Google Scholar 

  • Nur A and Mavko G 1974 Postseismic viscoelastic rebound;Science 183 204–206

    Article  Google Scholar 

  • Peltier W R 1974 The impulse response of a Maxwell earth;Rev. Geophys. Space Phys. 12 649–669

    Article  Google Scholar 

  • Pollitz F F 1992 Postseismic relaxation theory on the spherical Earth;Bull. Seismol. Soc. Am. 82 422–453

    Google Scholar 

  • Rosenman M and Singh S J 1973a Quasi-static strains and tilts due to faulting in a viscoelastic half-space;Bull. Seismol. Soc. Am. 63 1737–1752

    Google Scholar 

  • Rosenman M and Singh S J 1973b Stress relaxation in a semiinfinite viscoelastic Earth model;Bull. Seismol. Soc. Am. 63 2145–2154

    Article  Google Scholar 

  • Rundle J B 1978 Viscoelastic crustal deformation by finite quasi-static sources;J. Geophys. Res. 83 5937–5945

    Article  Google Scholar 

  • Rundle J B 1982 Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered earth;J. Geophys. Res. 87 7787–7796

    Article  Google Scholar 

  • Rundle J B and Jackson D D 1977 A three-dimensional viscoelastic model of a strike-slip fault;Geophys. J. R. Astron. Soc. 49 575–591

    Article  Google Scholar 

  • Singh K and Singh S J 1990 A simple procedure for obtaining the quasi-static displacements, strains, and stresses in a viscoelastic half-space;Bull. Seismol. Soc. Am. 80 488–492

    Article  Google Scholar 

  • Singh S J and Rosenman M 1974 Quasi-static deformation of a viscoelastic half-space by a displacement dislocation;Phys. Earth Planet. Int. 8 87–101

    Article  Google Scholar 

  • Thatcher W and Rundle J B 1979 A model for the earthquake cycle in under thrust zones;J. Geophys. Res. 84 5540–5556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.J., Singh, M. & Singh, K. A note on the assumptions made while computing the postseismic lithospheric deformation. Proc. Indian Acad. Sci. (Earth Planet Sci.) 106, 9–14 (1997). https://doi.org/10.1007/BF02841746

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02841746

Keywords

Navigation