Skip to main content

Contribution of allochthonous carbon to American shad production in the Mattaponi River, Virginia, using stable isotopes

Abstract

Our objective was to quantify the contribution of autochthonous, locally-produced phytoplankton, and allochthonous, terrestrial-derived organic matter (OM) to the production of young-of-year (YOY) American shad(Alosa sapidissima) using stable isotopes. We measured the carbon and nitrogen stable isotope composition of YOY American shad in the tidal fresh water of the Mattaponi River, a tributary in the York River estuary, during three consecutive years. The isotopic ratios of larval American shad varied among years, indicating a switch from reliance on a primarily autochthonous food web pathway during low and moderate discharge years (50–90%; 2002, 2004) to a primarily allochthonous pathway during a high discharge year (< 35% phytoplankton; 2003). Reliance on phytoplankton by larval fish declined exponentially with increasing Mattaponi River discharge. In 2003, juvenile production was also supported by allochthonous OM, though autochthonous phytoplankton accounted for an increasingly large fraction during June through August, up to 40–55%. We also found a long-term, positive relationship between the duration of above average flow during April through June in the Mattaponi River and a corresponding index of juvenile American shad abundance. The largest American shad cohort recorded since 1967 was observed in 2003, a high discharge year. The production of this cohort was largely supported by allochthonous OM. The results suggest an important link between river discharge, energy flow, and recruitment, wherein high discharge favors reliance on terrestrial carbon by YOY American shad, owing to changes in zooplankton diet, macroinvertebrate abundance, or both, and also favors high American shad abundance.

This is a preview of subscription content, access via your institution.

Literature Cited

  • Able, K. 1999. Measures of juvenile fish habitat quality: Examples from a national estuarine research reserve.American Fisheries Society Symposium 22:134–147.

    Google Scholar 

  • Allan, J. D. 1995. Stream Ecology: Structure and Function of Running Waters, 1st edition. Chapman and Hall, London, England.

    Google Scholar 

  • Aprahamiam, M. W., J. L. Baglinière, M. R. Sabatiè, P. Alexandrino, R. Thiel, and C. D. Aprahamiam. 2003. Biology, status, and conservation of the anadromous Atlantic twaite shad,Alosa fallax fallax, p. 103–124.In K. E. Limburg and J. R. Waldman (eds.), Biodiversity, Status, and Conservation of the World’s Shads. American Fisheries Society, Symposium 35, Bethesda, Maryland.

  • Austin, H. M. 2002. Decadal oscillations and regime shifts, a characterization of the Chesapeake Bay marine climate.American Fisheries Society Symposium 32:155–170.

    Google Scholar 

  • Bilkovic, D. M., C. H. Hershner, andJ. E. Olney. 2002. Macroscale assessment of American shad spawning and nursery habitats in the Mattaponi and Pamunkey rivers.North American Journal of Fisheries Management 22:1176–1192.

    Article  Google Scholar 

  • Chanton, J. andF. G. Lewis. 2002. Examination of coupling between primary and secondary production in a river-dominated estuary: Apalachicola Bay, Florida, USA.Limnology and Oceanography 47:683–697.

    Google Scholar 

  • Cloern, J. E. 2007. Habitat connectivity and ecosystem productivity: Implications from a simple model.The American Naturalist 169:E21-E33.

    Article  Google Scholar 

  • Cloern, J. E., E. A. Canuel, andD. Harris. 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system.Limnology and Oceanography 47:713–729.

    CAS  Google Scholar 

  • Crecco, V. A. andM. M. Blake. 1983. Feeding ecology of coexisting larvae of American shad and blueback herring in the Connecticut River.Transactions of the American Fisheries Society 112:498–507.

    Article  Google Scholar 

  • Crecco, V. A. andT. Savoy. 1987a. Review of recruitment mechanisms of the American shad: The critical period and match-mismatch hypotheses reexamined.American Fisheries Society Symposium 1:455–468.

    Google Scholar 

  • Crecco, V. A. andT. F. Savoy. 1987b. Effects of climatic and density-dependent factors on intra-annual mortality of larval American shad.American Fisheries Society Symposium 2:69–81.

    Google Scholar 

  • Cummins, K. W. 1996. Ecology and distribution of aquatic insects, p. 74–86.In R. W. Merritt and K. W. Cummins (eds.), An Introduction to the Aquatic Insects of North America, 3rd edition. Kendall/Hunt Publishing, Dubuque, Iowa.

    Google Scholar 

  • Deegan, L. A. andR H. Garritt. 1997. Evidence for spatial variability in estuarine food webs.Marine Ecology Progress Series 147:31–47.

    Article  Google Scholar 

  • DeNiro, M. J. andS. Epstein. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis.Science 197:261–263.

    Article  CAS  Google Scholar 

  • Feuchtmayr, H. andJ. Grey. 2003. Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton.Rapid Communications in Mass Spectrometry 17:2605–2610.

    Article  CAS  Google Scholar 

  • Fry, B. 1991. Stable isotope diagrams of freshwater food webs.Ecology 72:2293–2297.

    Article  Google Scholar 

  • Fry, B. andE. Sherr. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems.Contributions in Marine Science 27:13–47.

    CAS  Google Scholar 

  • Garman, G. C. andS. A. Macko. 1998. Contribution of marinederived organic matter to an Atlantic coast, freshwater, tidal stream by anadromous clupeid fish.Journal of the North American Benthological Society 17:227–285.

    Article  Google Scholar 

  • Grabe, S. A. 1996. Feeding chronology and habits ofAlosa spp. (Clupeidae) juveniles from the lower Hudson River estuary, New York.Environmental Biology of Fishes 47:321–326.

    Article  Google Scholar 

  • Gregory, R S. andC. D. Levings. 1998. Turbidity reduces predation on migrating juvenile Pacific salmon.Transactions of the American Fisheries Society 127:275–285.

    Article  Google Scholar 

  • Grey, J., R I. Jones, andD. Sleep. 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis.Limnology and Oceanography 46:505–513.

    Google Scholar 

  • Hedges, J. I., W. A. Clark, P. D. Quay, J. E. Richey, A. H. Devol, andU. de M. Santos. 1986. Compositions and fluxes of particulate organic material in the Amazon River.Limnology and Oceanography 31:717–738.

    CAS  Google Scholar 

  • Herzka, S. Z. andG. J. Holt. 2000. Changes in isotopic composition of red drum(Sciaenops ocellatus) larvae in response to dietary shifts: Potential applications to settlement studies.Canadian Journal of Fisheries and Aquatic Sciences 57:137–147.

    Article  Google Scholar 

  • Hoffman, J. C. andD. A. Bronk. 2006. Inter-annual variation in stable carbon and nitrogen isotope biogeochemistry of the Mattaponi River, Virginia.Limnology and Oceanography 51:2319–2332.

    CAS  Google Scholar 

  • Hoffman, J. C., D. A. Bronk, andJ. E. Olney. 2007. Tracking nursery habitat use by young American shad in the York River estuary, Virginia using stable isotopes.Transactions of the American Fisheries Society 136:1285–1297.

    Article  Google Scholar 

  • Hoffman, J. C. andJ. E. Olney. 2005. Cohort-specific growth and mortality of juvenile American shad in the Pamunkey River, Virginia.Transactions of the American Fisheries Society 134:1–18.

    Article  Google Scholar 

  • Houde, E. D. 1997. Patterns and trends in larval-stage growth and mortality of teleost fish.Journal of Fish Biology 51:52–83.

    Article  Google Scholar 

  • Kriete, W. H. andJ. G. Loesch. 1980. Design and relative efficiency of a bow-mounted pushnet for sampling juvenile pelagic fishes.Transactions of the American Fisheries Society 109: 649–652.

    Article  Google Scholar 

  • Leach, S. D. andE. D. Houde. 1999. Effects of environmental factors on survival, growth, and production of American shad larvae.Journal of Fish Biology 54:767–786.

    Article  Google Scholar 

  • Limburg, K. E. 1996. Growth and migration of 0-year American shad(Alosa sapidissima) in the Hudson River estuary: Otolith microstructural analysis.Canadian Journal of Fisheries and Aquatic Sciences 53:220–238.

    Article  Google Scholar 

  • Limburg, K. E. 2001. Through the gauntlet again: Demographic restructuring of American shad by migration.Ecology 82:1584–1596.

    Google Scholar 

  • Mann, K. H. 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems.Limnology and Oceanography 33:910–930.

    CAS  Article  Google Scholar 

  • Martinelli, L. A., M. C. Piccolo, A. R. Townsend, P. M. Vitousek, E. Cuevas, W. McDowell, G. P. Robertson, O. C. Santos, andK. Treseder. 1999. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests.Biogeochemistry 46:45–65.

    CAS  Google Scholar 

  • McConnaughey, T. andC. P. McRoy. 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea.Marine Biology 53:257–262.

    Article  CAS  Google Scholar 

  • Michener, R. H. andD. M. Schell. 1994. Stable isotope ratios as tracers in marine and aquatic food webs, p. 138–157.In K. Lajhta and R. H. Michener (eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Olney, J. E., D. M. Bilkovic, C. Hershner, L. Varnell, H. Wang, and R. Mann. 2006. Six fish and 60,000 thirsty folks- A fishing moratorium on American shad thwarts a controversial municipal reservoir project in Virginia, USA, p. 587–597.In Proceedings of the World Fisheries Conference, American Fisheries Society Symposium, Vancouver, B.C.

  • Phillips, D. L. andJ. W. Gregg. 2001. Uncertainty in source partitioning using stable isotopes.Oecologia 127:171–179.

    Article  Google Scholar 

  • Polis, G. A., W. B. Anderson, andR. D. Holt. 1997. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs.Annual Review of Ecology and Systematics 28:289–316.

    Article  Google Scholar 

  • Ross, R. M., R. M. Bennett, andJ. H. Johnson. 1997. Habitat use and feeding ecology of riverine juvenile American shad.North American Journal of Fisheries Management 17:964–974.

    Article  Google Scholar 

  • Sakano, H., E. Fujiwara, S. Nohara, andH. Ueda. 2005. Estimation of nitrogen stable isotope turnover rate ofOncorhynchus nerka.Environmental Biology of Fishes 72:13–18.

    Article  Google Scholar 

  • Sin, Y., R. L. Wetzel, andI. C. Anderson. 1999. Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River estuary, Virginia: Analyses of long-term data.Estuaries 22:260–275.

    Article  Google Scholar 

  • Sobczak, W. V., J. E. Cloern, A. D. Jassby, B. E. Cole, T. S. Schraga, andA. Arnsberg. 2005. Detritus fuels ecosystem metabolism but not metazoan food webs in San Francisco Estuary’s freshwater delta.Estuaries 28:124–137.

    CAS  Article  Google Scholar 

  • Sun, L., E. M. Perdue, J. L. Meyer, andJ. Weis. 1997. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river.Limnology and Oceanography 42:714–721.

    CAS  Google Scholar 

  • Vander Zanden, M. J. andJ. B. Rasmussen. 2001. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies.Limnology and Oceanography 46:2061–2066.

    CAS  Article  Google Scholar 

  • Wilhite, M. L., K. L. Maki, J. M. Hoenig, and J. E. Olney. 2003. Toward validation of a juvenile index of abundance for American shad in the York River, Virginia, p. 285–294.In K. E. Limburg and J. R. Waldman (eds.), Biodiversity, Status, and Conservation of the World’s Shads. American Fisheries Society, Symposium 35, Bethesda, Maryland.

Sources of Unpublished Materials

  • Virginia Estuarine and Coastal Observing System (VECOS). unpublished data Virginia Institute of Marine Science, P. O. Box 1346, Gloucester Point, VA 23062, http://www2.vims.edu/ vecos/.

  • Virginia Institute of Marine Science (VIMS). unpublished data. P. O. Box 1346, Gloucester Point, Virginia 23062, metadata located at www.fisheries.vims.edu/trawlseine/sbmain.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel C. Hoffman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoffman, J.C., Bronk, D.A. & Olney, J.E. Contribution of allochthonous carbon to American shad production in the Mattaponi River, Virginia, using stable isotopes. Estuaries and Coasts: J ERF 30, 1034–1048 (2007). https://doi.org/10.1007/BF02841394

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02841394

Keywords

  • Phytoplankton
  • Particulate Organic Matter
  • Organic Matter Source
  • American Fishery Society
  • American Shad