Estuaries and Coasts

, Volume 30, Issue 5, pp 886–894 | Cite as

Predation on the rocky shores of Patagonia, Argentina

  • Fernando J. HidalgoEmail author
  • Brian R. Silliman
  • María Cielo Bazterrica
  • Mark D. Bertness


Rocky intertidal communities of Argentinean Patagonia are exposed to harsh physical conditions caused by dry, strong southern trade winds (mean speed 45 km h-1, gusts up to 140 km h-1) that result in intense desiccation of intertidal organisms. Predator distributions in these communities were evaluated from April 2003 to December 2004 at two exposed headlands and six protected bays in Cabo dos Bahias (44°50′S, 65°40′W). Crabs and sea stars dominated the predator assemblage, with occasional scavenger snails and fish also present. During low tide, predators were never found in the open but were always associated with shelter (primarily within mussel beds and coralline algae), suggesting a strong predator dependency on foundation species to buffer them from physical stress. Few predators (mostly crabs) emerged from shelter at high tide. Unlike the larger predators found on Chilean rocky shores, invertebrate predators in this system are diminutive, generally < 2 cm. The lone exception was the newly discovered invasive green crab,Carcinus mamas. Feeding trials, gut content analyses, and visual surveys indicated that native predators feed primarily on small, soft-bodied prey.C. mamas fed on slow-moving and sessile animals, including the super abundant musselPerumytilus purpuratus, with much greater voracity than native predators. Because native intertidal organisms are dependent on mussel beds and coralline algae for shelter from desiccation, successful invasion ofC. mamas may lead to a significant decrease in native diversity by consuming foundation species. This study represents a preliminary survey of predator distributions and feeding habits on the rocky shores of Argentinean Patagonia and provides important baseline data to evaluate trophic linkages and predatory effects on Patagonian rocky shores.


Rocky Shore Green Crab Experimental Marine Biology Foundation Species Intertidal Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Baldó, F. andP. Drake. 2002. A multivariate approach to the feeding habits of small fishes in the Guadalquivir Estuary.Journal of Fish Biology 61:21–32.CrossRefGoogle Scholar
  2. Behrens Yamada, S. andE. G. Boulding. 1996. The role of highly mobile predators in the intertidal zonation of their gastropod prey.Journal of Experimental Marine Biology and Ecology 204:59–83.CrossRefGoogle Scholar
  3. Bertness, M. D. andR. Callaway. 1994. Positive interactions in communities.Trends in Ecology and Evolution 9:191–193.CrossRefGoogle Scholar
  4. Bertness, M. D., C. Mullan Crain, B. R. Silliman, M. C. Bazterrica, M. V. Reyna, F. Hidalgo, andJ. K. Farina. 2006. The community structure of western Atlantic Patagonian rocky shores.Ecological Monographs 76:429–460.CrossRefGoogle Scholar
  5. Bertness, M. D., S. D. Garrity, andS. C. Levings. 1981. Predation pressure and gastropod foraging patterns: A latitudinal patter.Evolution 35:995–1007.CrossRefGoogle Scholar
  6. Camacho, H. H. 1979. Descriptión geológica de la hoja 47h-48g, Bahía Camarones, Provincia del Chubut. Boletín No. 153. Servicio Geológico Nacional, Buenos Aires, Argentina.Google Scholar
  7. Carlton, J. T. andA. N. Cohen. 2003. Episodic global dispersai in shallow water marine organisms: The case history of the European shore crabsCarcinus maenas andC. aestuarii.Journal of Biogeography 30:1809–1820.CrossRefGoogle Scholar
  8. Castilla, J. C. andL. R. Durán. 1985. Human exclusion from the rocky intertidal zone of central Chile: The effects onConcholepas concholepas (Gastropoda).Oikos 45:391–399.CrossRefGoogle Scholar
  9. Clarke, K. R. andR. M. Warwick. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edition. PRIMER-E, Plymouth, U.K.Google Scholar
  10. Dayton, P. K. andR. R. Hessler. 1972. Role of biological disturbance in maintaining diversity in the deep sea.Deep-Sea Research 19:199–208.Google Scholar
  11. Declerck, S., G. Louette, T. De Bie, andL. De Meester. 2002. Patterns of diet overlap between populations of non-indigenous and native fishes in shallow ponds.Journal of Fish Biology 61: 1182–1197.CrossRefGoogle Scholar
  12. Duffy, J. E. andM. E. Hay. 2000. The ecology and evolution of marine consumer-prey interactions, p. 131–157.In M. D. Bertness, S. D. Gaines, and M. E. Hay (eds.), Marine Community Ecology. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts.Google Scholar
  13. Dungan, M. L. 1986. Three-way interactions: Barnacles, limpets, and algae in Sonoran desert rocky intertidal zone.The American Naturalist 127:292–316.CrossRefGoogle Scholar
  14. Ebling, F. J., J. A. Kitching, L. Muntz, andC. M. Taylor. 1964. The ecology of Loch Ine: XIII. Experimental observations of the destruction ofMytilus edulis andNucella lapillus by crabs.The Journal of Animal Ecology 33:73–82.CrossRefGoogle Scholar
  15. Eggleston, D. B., R. N. Lipcius, andA. H. Hines. 1992. Density-dependent predation by blue crabs upon infaunal clam species with contrasting distribution and abundance patterns.Marine Ecology Progress Series 85:55–68.CrossRefGoogle Scholar
  16. Elner, R. W. andR. N. Hughes. 1978. Energy maximization in the diet of the shore crab,Carcinus maenas.The Journal of Animal Ecology 47:103–116.CrossRefGoogle Scholar
  17. Estes, J. A. andP. D. Palmisano. 1974. Sea otters: Their role in structuring nearshore communities.Science 185:1058–1060.CrossRefGoogle Scholar
  18. Flach, E. C. 2003. The separate and combined effects of epibenthic predation and presence of macro-infauna on the recruitment success of bivalves in shallow soft-bottom areas on the Swedish west coast.Journal of Sea Research 49:59–67.CrossRefGoogle Scholar
  19. Freeman, A. S. andJ. E. Byers. 2006. Divergent induced responses to an invasive predator in marine mussel populations.Science 313:831–833.CrossRefGoogle Scholar
  20. Grosholz, E. D. andG. M. Ruiz. 1996. Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crabCarcinus maenas.Biological Conservation 78:59–66.CrossRefGoogle Scholar
  21. Hay, M. E. 1984. Patterns of fish and urchin grazing on Caribbean reefs: Are previous results typical?Ecology 65:446–454.CrossRefGoogle Scholar
  22. Heck, Jr., K. L. andJ. F. Valentine. 1995. Sea urchin herbivory: Evidence for long-lasting effects in subtropical seagrass meadows.Journal of Experimental Marine Biology and Ecology 189:205–217.CrossRefGoogle Scholar
  23. Hidalgo, F. J., P. J. Barón, andJ. M. (Lobo) Orensanz. 2005. A prediction come true: The green crab invades the Patagonian coast.Biological Invasions 7:547–552.CrossRefGoogle Scholar
  24. Hunt, H. L. andR. E. Scheibling. 1998. Effects of whelk(Nucella lapillus (L.)) predation on mussel(Mytilus trossulus (Gould),M. edulis (L.)) assemblages in tidepools and on emergent rock on a wave-exposed rocky shore in Nova Scotia, Canada.Journal of Experimental Marine Biology and Ecology 226:87–113.CrossRefGoogle Scholar
  25. Hyslop, E. J. 1980. Stomach contents analysis-a review of methods and their application.Journal of Fish Biology 17:411–429.CrossRefGoogle Scholar
  26. Iribarne, O., P. Martinetto, E. Schwindt, F. Botto, A. Bortolus, andP. Garcia Borboroglu. 2003. Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs.Journal of Experimental Marine Biology and Ecology 296:167–182.CrossRefGoogle Scholar
  27. Jamieson, G. S., E. D. Grosholz, D. A. Armstrong, andR. W. Elner. 1998. Potential ecological implications from the introduction of the European green crab,Carcinus maenas (Linneaus), to British Columbia, Canada, and Washington, USA.Journal of Natural History 32:1587–1598.CrossRefGoogle Scholar
  28. Juanes, F. 1992. Why do decapod crustaceans prefer small-sized molluscan prey?Marine Ecology Progress Series 87:239–249.CrossRefGoogle Scholar
  29. Layman, C. A. andB. R Silliman. 2002. Preliminary survey and diet analysis of juvenile fishes of an estuarine creek on Andros Island, Bahamas.Bulletin of Marine Science 70:199–210.Google Scholar
  30. Leonard, G. H., J. M. Levine, P. R. Schmidt, andM. D. Bertness. 1998. Flow-driven variation in intertidal community structure in a Maine estuary.Ecology 79:1395–1411.CrossRefGoogle Scholar
  31. McCook, L. J. andA. R. O. Chapman. 1993. Community succession following massive ice-scour on a rocky intertidal shore: Recruitment, competition and predation during early, primary succession.Marine Biology 115:565–575.CrossRefGoogle Scholar
  32. McDonald, P. S., G. C. Jensen, andD. A. Armstrong. 2001. The competitive and predatory impacts of the non-indigenous crabCarcinus maenas L. on early benthic phase Dungeness crabCancer magister Dana.Journal of Experimental Marine Biology and Ecology 258:39–54.CrossRefGoogle Scholar
  33. Menge, B. A. andJ. Lubchenco. 1981. Community organization in temperate and tropical rocky inter-tidal habitats-prey refuges in relation to consumer pressure-gradients.Ecological Monographs 51:429–450.CrossRefGoogle Scholar
  34. Menge, B. A., J. Lubchenco, andL. R. Ashkenas. 1985. Diversity, heterogeneity and consumer pressure in a tropical rocky intertidal community.Oecologia 65:394–405.CrossRefGoogle Scholar
  35. Menge, B. A. andJ. P. Sutherland. 1987. Community regulation: Variation in disturbance, competition, and predation in relation to environmental stress and recruitment.The American Naturalist 130:730–757.CrossRefGoogle Scholar
  36. Olivier, S., A. Escofet, P. Penchaszadeh, andJ. M. Orensanz. 1972. Estudios ecológicos de la region estuarial de Mar Chiquita (Bs.As., Argentina):II. Relaciones tróficas interespe-cíficas.Anales de la Sociedad Científica Argentina 194:89–104.Google Scholar
  37. Paine, R. T. 1966. Food web complexity and species diversity.The American Naturalist 100:65–75.CrossRefGoogle Scholar
  38. Paine, R. T. 1974. Intertidal community structure: Experimental studies on the relationship among a dominant competitor and its principal predator.Oecologia 15:93–120.CrossRefGoogle Scholar
  39. Paine, R. T., J. C. Castilla, andJ. Cancino. 1985. Perturbation and recovery patterns of starfish-dominated intertidal assemblages in Chile, New Zealand and Washington State.The American Naturalist 125:679–691.CrossRefGoogle Scholar
  40. Peterson, C. H. 1982. The importance of predation and intra- and interspecific competition in the population biology of two infaunal suspension-feeding bivalves,Protothaca staminea andChione undatella.Ecological Monographs 52:437–475.CrossRefGoogle Scholar
  41. Ruesink, J. L. 2000. Intertidal mesograzers in field microcosms: Linking laboratory feeding rates to community dynamics.Journal of Experimental Marine Biology and Ecology 248:163–176.CrossRefGoogle Scholar
  42. Scelzo, M. A. andV. Lichtscheinde Bastida. 1978. Desarrollo larval y metamorfosis del cangrejoCyrtograpsus altimanus Rathbum, 1914 (Brachyura, Grapsidae) en laboratorio, con observaciones sobre la ecología de la especie.Physis 38:103–126.Google Scholar
  43. Schiel, D. R., J. Steinbeck, andM. S. Foster. 2004. Ten years of induced ocean warming causes comprehensive changes in marine benthic communities.Ecology 85:1833–1839.CrossRefGoogle Scholar
  44. Schratzberger, M. andR. M. Warwick. 1999. Impact of predation and sediment disturbance byCarcinus maenas (L.) on free-living nematode community structure.Journal of Experimental Marine Biology and Ecology 235:255–271.CrossRefGoogle Scholar
  45. Silliman, B. R. andM. D. Bertness. 2002. A trophic cascade regulates salt marsh primary production.Proceedings of the National Academy of Sciences of the United States of America 99: 10500–10505.CrossRefGoogle Scholar
  46. Spivak, E. D. 1997. Cangrejos estuariales del Atlántico sudoccidental (25°-41°S) (Crustacea: Decapoda: Brachyura).Investigaciones Marinas 25:105–120.Google Scholar
  47. Walton, W. C., C. MacKinnon, L. F. Rodriguez, C. Proctor, andG. M. Ruiz. 2002. Effect of an invasive crab upon a marine fishery: Green crab,Carcinus maenas, predation upon a venerid clam,Katelysia scalarina in Tasmania (Australia).Journal of Experimental Marine Biology and Ecology 272:171–189.CrossRefGoogle Scholar
  48. Williams, R. J. andN. D. Martinez. 2000. Simple rules yield complex food webs.Nature 404:180–183.CrossRefGoogle Scholar
  49. Zar, J. H. 1999. Biostatistical Analysis, 4th edition. Prentice Hall, Inc, Englewood Cliffs, New Jersey.Google Scholar

Copyright information

© Estuarine Research Federation 2007

Authors and Affiliations

  • Fernando J. Hidalgo
    • 1
    Email author
  • Brian R. Silliman
    • 2
  • María Cielo Bazterrica
    • 1
  • Mark D. Bertness
    • 3
  1. 1.Laboratorio de Ecología, Departamento de Biologia (FCEyN)Universidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Department of ZoologyUniversity of FloridaGainesvilleUSA
  3. 3.Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceUSA

Personalised recommendations