Skip to main content
Log in

Mantle degassing and diamond genesis: A carbon isotope perspective

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

The effect of CO2 and CH4 degassing from the mantle on the carbon isotopic composition of diamond has been quantitatively modeled in terms of the principles of Rayleigh distillation. Assuming the δ13C value of -5‰ for the mantle, the outgassing of CO2 can result in the large negative δ13C values of diamond, whereas the outgassing of CH4 can drive the δ13C values of diamond in the positive direction. The theoretical expectations can be used to explain the full range of δ13C values from -34.4‰ to +5‰ observed for natural diamonds. It is possible that diamond formation was triggered by the degassing of CO2 and/ or CH4 from the mantle and the associated fractional crystallization of carbonate-bearing melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allégre, C. J., T. Staudacher, P. Sarda, and M. Kurz, 1983, Constraints on evolution of Earth’s mantle from rare gas systematics: Nature, v. 303, p. 762–766.

    Article  Google Scholar 

  • Allégre, C.J., T. Staudacher, and P. Sarda, 1987, Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle: Earth Planet. Sci. Lett., v. 81, p. 127–150.

    Article  Google Scholar 

  • Alt J. C., W. C. Shanks III, and M. G Jackson, 1993, Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough: Earth Planet. Sci. Lett., v. 119, p. 477–494.

    Article  Google Scholar 

  • Azbel, I. Ya. and I. N. Tolstikhin, 1990, Geodynamics, magmatism, and degassing of the Earth: Geochim. Cosmochim. Acta, v. 54, p. 139–154.

    Article  Google Scholar 

  • Berg, G. W., 1986, Evidence for carbonate in the mantle: Nature, v. 324, p. 50–51.

    Article  Google Scholar 

  • Bottinga, Y., 1968, Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water: J. Phys. Chem., v. 72, p. 800–808.

    Article  Google Scholar 

  • Bottinga, Y., 1969a, Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water valor: Geochim. Cosmochim. Acta, v. 33, p. 49–64.

    Article  Google Scholar 

  • Bottinga, Y., 1969b, Carbon isotope fractionation between graphite, diamond and carbon dioxide: Earth Planet. Sci. Lett., v. 5, p. 301–307.

    Article  Google Scholar 

  • Bottinga, Y. and M. Javoy, 1989, MORB degassing: evolution of CO2: Earthe Planet. Sci. Lett., v. 95, p. 215–225.

    Article  Google Scholar 

  • Boyd, S. R., D. P. Mattey, C. T. Pillinger, H. J. Milledge, M. Mendelsohn, and M. Seal, 1987, Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones: Earth Planet. Sci. Lett., v. 86, p. 341–353.

    Article  Google Scholar 

  • Boyd, S. R., C. T. Pillinger, H. J. Milledge, and M. J. Seal, 1992, C and N isotopic composition and the infrared absorption spectra of coated diamonds: evidence for the regional uniformity of CO2-H2O rich fluids in lithospheric mantle: Earth Planet. Sci. Lett., v. 108, p. 139–150.

    Article  Google Scholar 

  • Chacko, T., T. K. Mayeda, R. N. Clayton, and J. R. Goldsmith, 1991, Oxygen and carbon isotope fractionations between CO2 and calcite: Geochim. Cosmochim. Acta, v. 55, p. 2867–2882.

    Article  Google Scholar 

  • Craig, H., 1953, The geochemistry of stable carbon isotopes: Geochim. Cosmochim. Acta, v. 3, p. 53–92.

    Article  Google Scholar 

  • Davies, G., 1981, Decomposing the IR absorption spectra of diamond: Nature, v. 290, p. 40–41.

    Article  Google Scholar 

  • Deines, P., 1980, The carbon isotopic composition of diamonds: relationship to diamond shape, color, occur rence and vapor composition: Geochim. Cosmochim. Acta, v. 44, p. 943–961.

    Article  Google Scholar 

  • Deines, P., J. J. Gurney, and J. W. Harris, 1984, Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa: Geochim. Cosmochim. Acta, v. 48, p. 325–342.

    Article  Google Scholar 

  • Deines, P., J. W. Harris, and J. J. Gurney, 1987, Carbon isotopic composition, nitrogen content and inclusion composition of diamonds from the Roberts Victor kimberlite, South Africa: evidence for13C depletion in the mantle: Geochim. Cosmochim. Acta, v. 51, p. 1227–1243.

    Article  Google Scholar 

  • Deines, P., P. M. Harris, P. M. Spear, and J. J. Gurney, 1989, Nitrogen and13C content of Finsch and Premier diamonds and their implications: Geochim. Cosmochim. Acta, v. 53. p. 1367–1378.

    Article  Google Scholar 

  • Deines, P., J. W. Harris, D. N. Robinson, J. J. Gurney, and S. R. Shee, 1991a, Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa, Botswana, and the nitrogen content of their diamonds: Geochim. Cosmochim. Acta, v. 55, p. 515–524.

    Article  Google Scholar 

  • Deines, P., J. W. Harris, and J. J. Gurney, 1991b, The carbon isotopic composition and nitrogene content of lithospheric and asthenospheric diamonds from the Jagesfontein and Koffiefontein kimberlite, South Africa: Geochim. Cosmochim. Acta, v. 55, p. 2615–2625.

    Article  Google Scholar 

  • Edwards, G. R., 1992, Mantle decarbonation and Archean high-Mg magmas: Geology, v. 20, p. 899–902.

    Article  Google Scholar 

  • Eldridge C. S., W. Compston, I. S. Williams, J. W. Harris, and J.W. Bristow, 1991, Isotopic evidence for the involvement of recycled sediments in diamond formation: Nature, v. 353, p 649–653.

    Article  Google Scholar 

  • Galimov, E. M., 1984, Variations in isotopic composition of diamonds and inferences for diamond genesis conditions: Geokhimiya, n.8, p.1091–1118 (in Russian).

  • Galimov, E. M., 1991, Isotope fractionation related to kimberlite magmatism and diamond formation: Geochim. Cosmochim. Acta, v. 55. p. 1697–1708.

    Article  Google Scholar 

  • Galimov, E. M., Yu. A. Klyuyev, I. N. Ivanovskaya, V. V. Gritisk, V. I. Nepsha, V. I. Sminov, N. I. Epishina, S. P. Plotnikova, and V. I. Koptil, 1979, Correlations of isotope composition of carbon, morphology and structural peculiarities of microcrystalline diamond from Yakutian placers: Dokl. Akad. Nauk. SSSR, v. 249, p. 153–155.

    Google Scholar 

  • Jaques, A. L., A. E. Hall, J. W. Sheraton, C.B. Smith, S. S. Sun, R. M. Drew, C. Foundoulis, and K. Ellingsen, 1989, Composition of srystalline inclusions and C-isotopic composition of Argyle and Ellendale diamonds. Kimberlites and Related Rocks, Vol. 2: Their Mantle/Crust Setting, Diamonds and Diamond Exploration: GAS Special Publication, n.14, p.966–989.

  • Javoy, M., F. Pineau, and I. Iiyama. 1978, Experimental determination of the isotopic fractionation between gaseous CO2 and carbon dissolved in tholeiitic magma: Contrib. Mineral. Petrol., v. 67, p. 35–39.

    Article  Google Scholar 

  • Javoy, M., Pineau, F. and H. Delorme, 1986. Carbon and nitrogen isotopes in the mantle: Chem. Geol., v. 57, p. 41–62.

    Article  Google Scholar 

  • Kirkley, M. B., J. J. Gurney, M. L. Otter, S. J. Hill, and L. R. Daniels, 1991, The application of C isotope measurements to the identification of the sources of C in diamonds: a review: Applied Geochem., v. 6, p. 477–494.

    Article  Google Scholar 

  • Koval’skii, V. V. and N. V. Cheriskii, 1972, The carbon isotope composition of diamonds: Geology and Geophysics. n.9, p.10–15 (in Russian).

  • Krauskopf K. B., 1957. The heavy metal content of magmatic vapor at 600 °C: Econ. Geol., v. 52, p. 786–807.

    Article  Google Scholar 

  • Laptev, V. A., I. N. Ivanoskaya. and E. M. Galimov, 1978, Investigation of the carbon isotope fractionation in the process of diamond sythesis: Abstracts of the 7th National Symposium on Isotope Geochemistry, Moscow, p.95.

  • Meyer, H.O.A., 1985. Genesis of diamond: a mantle sega: Am. Mineral., v. 70. p. 344–355.

    Google Scholar 

  • Mattey, D. P., R. A. Exley, and C. T. Pillinger, 1989, Isotopic composition of CO2 and dissolved carbon species in basalt glass: Geochim. Cosmochim. Acta, v. 53, p. 2377–2386.

    Article  Google Scholar 

  • Mattey D. P., W. R. Taylor, D. H. Green, and C. T. Pillinger, 1990, Carbon isotopic fractionation between CO2 vapour, silicate and carbonate melts: an experimental study to 30 kbar: Contrib. Mineral. Petrol., v. 104, p. 492–505.

    Article  Google Scholar 

  • Milledge, H. J., M. J. Mendelssohn, M. Seal, J. E. Rouse, P. K. Swart, and C. T. Pillinger, 1983. Carbon isotopic variation in spectral Type II diamonds: Nature, v. 303, p. 791–792.

    Article  Google Scholar 

  • Pineau, F. and M. Javoy, 1983, Carbon isotopes and concentrations in mid-ocean ridge basalts: Earth Planet. Sci. Lett., v. 62, p. 239–257.

    Article  Google Scholar 

  • Pineau, F. and M. Javoy, 1989, Carbon isotope geochemistry at convergent margins and fluid exchange at mantle-crust boundaries: EOS, v. 70, p. 1380 (abs.)

    Google Scholar 

  • Richet, P., Y. Bottinga, and M. Javoy, 1977. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules: Ann. Rev. Earth Planet. Sci., v. 5, p. 65–110.

    Article  Google Scholar 

  • Scheele, N. and J. Hoefs, 1992, Carbon isotope fractionation between calcite, graphite and CO2: an experimental study: Contrib. Mineral. Petrol., v. 112, p. 35–45.

    Article  Google Scholar 

  • Simakov, S. K., 1982, Formation and crystallization of diamond from fluid in mantle melts: Dokl. Akad. Nauk. SSSR, v. 266, p. 166–168.

    Google Scholar 

  • Smirnov, G. I., M. M. Mofolo, P. M. Lerotholi, F. V. Kaminsky, E. M. Galimov, and I. N. Ivanovskaya, 1979, Isotopically light carbon in diamonds from some kimberlite pipes in Lesotho: Nature, v. 278, p. 630.

    Article  Google Scholar 

  • Sobolev, N. V., 1984. Crystalline inclusions in diamonds from New South Wales, in J. E. Glover and P. G. Harris, eds., Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration: University of Western Australia. p.213–236.

  • Sobolev, N. V., E. M. Galimov, I. N. Ivanovskaya, and E. S. Yefimova, 1979. The carbon isotope compositions of diamonds containing crystallographic inclusions: Dokl. Akad. Nauk. SSSR. v. 249, p. 1217–1220.

    Google Scholar 

  • Swart, P. K., C.T. Pillinger, H.J. Milledge, and M. Seal, 1983. Carbon isotopic variation within individual diamonds: Nature, v. 303, p. 793–795.

    Article  Google Scholar 

  • Taylor. W. R. and D. H. Green, 1989. The role of reduced C-O-H fluids in mantle partial melting, Kimberlites and Related Rocks. Vol. 1: Their Composition, Occurrence, Origin and Emplacement: GSA Special Publication, n.14, p.592–602.

  • Vinogradov. A. P., O. I. Kropotova. Yu. L. Orlov. and V. A. Grimenko. 1966. Isotopic composition of diamond and carbonado crystals: Geokhimiya. n.12, p. 1395–1397 (in Russian).

  • Wickman, F. E., 1956, The cycle of carbon and stable carbon isotopes: Geochim. Cosmochim. Acta, v. 9. p. 136–153.

    Article  Google Scholar 

  • Woermann, E. and M. Rosenhauer, 1985. Fluid phases and the redox state of the Earth’s mantle: extrapolations based on experimental, phase-theoretical and petrological data: Fortschr. Miner., v. 63. P. 263.-349.

    Google Scholar 

  • Zheng Yong-Fei, 1990, Sulfur isotope fractionation in magma systems: Models of Rayleigh distillation and selective flux: Chinese J. Geochem., v. 9. p. 27–45.

    Article  Google Scholar 

  • Zheng Yong-Fei, 1992. Sulfur isotopes in the mantle: Naturwissenschaften, v. 79, p. 511–512.

    Article  Google Scholar 

  • Zheng Yong-Fei, 1993. Oxygen isotope fractionation in the polymorphs of SiO2 and Al2SiO5: effect of crystal structure: Eur. J.Mineral., v. 5. p. 651–658.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was financially supported by the Chinese Academy of Sciences within the framework of the project “Stable Isotope Geochemistry of the Earth’s Crust and Mantle”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong-Fei, Z. Mantle degassing and diamond genesis: A carbon isotope perspective. Chin. J. of Geochem. 13, 305–316 (1994). https://doi.org/10.1007/BF02838520

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02838520

Key words

Navigation