Skip to main content
Log in

Laminar compressible boundary layer flow at a three-dimensional stagnation point with vectored mass transfer

  • Published:
Proceedings of the Indian Academy of Sciences - Mathematical Sciences Aims and scope Submit manuscript

Abstract

The effect of surface mass transfer velocities having normal, principal and transverse direction components (‘vectored’ suction and injection) on the steady, laminar, compressible boundary layer at a three-dimensional stagnation point has been investigated both for nodal and saddle points of attachment. The similarity solutions of the boundary layer equations were obtained numerically by the method of parametric differentiation. The principal and transverse direction surface mass transfer velocities significantly affect the skin friction (both in the principal and transverse directions) and the heat transfer. Also the inadequacy of assuming a linear viscosity-temperature relation at low-wall temperatures is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b:

velocity gradients inx andy directions, respectively

c:

ratio of velocity gradients,b/a

Cfx, Cfy :

skin-friction coefficients alongx andy directions, respectively

f, s:

dimenionless stream functions such thatf′=u/u e ands′=v/v e

fw :

mass transfer parameter,-(ρw) w/(ρeμea)1/2

g:

dimensionless enthalpy,h/h e

gw :

cooling parameter for the wall,h w/he

h:

enthalpy

Pr:

Prandtl number

q:

heat transfer rate

Rex :

local Reynolds number,u cx/ve

St:

Stanton number

T:

temperature

u, v, w:

velocity components alongx, y, z directions, respectively

x, y, z:

principal, transverse and normal directions, respectively

η:

similarity variable, (ρ e /μ e )1/2 z0 (ρ/ρ e )dz

μ:

coefficient of viscosity

ν:

kinematic viscosity

ρ:

density

τx, τy :

dimensional shear stress functions

ω:

exponent in the power-law variation of viscosity

′ (prime):

differentiation with respect toη

e:

condition at the edge of the boundary layer

w:

condition at the surfacez=η=0.

References

  1. Ackroyd J A D 1970Aeronaut. J. 74 155

    Google Scholar 

  2. Bourne D E and Elliston D G 1970Int. J. Heat Mass Transfer 13 583

    Article  Google Scholar 

  3. Gross J F and Dewey C F 1965Fluid Dynamics Trans. ed. W Fiszdon (Pergamon Press) Vol. 2, p. 529

  4. Inger G R and Swean T F 1975AIAA J. 13 616

    MATH  Google Scholar 

  5. Libby P A 1967AIAA J. 5 507

    MATH  Google Scholar 

  6. Libby PA 1974AIAA J. 12 408

    Google Scholar 

  7. Na T Y and Turski C E 1974Aeronaut. Q. 23 14

    Google Scholar 

  8. Nath G and Muthanna M 1976AIAA J. 14 1777

    Google Scholar 

  9. Rubbert P E 1965 Ph.D. Thesis M.I.T. Cambridge

    Google Scholar 

  10. Rubbert P E and Landahl M T 1967Phys. Fluids 10 831

    Article  MATH  Google Scholar 

  11. Sakiadis B C 1961A.I. Ch. E.J. 7 26–28, 221–225, 467–472

    Google Scholar 

  12. Scala S and Sutton G 1957Jet Propulsion 27 895

    Google Scholar 

  13. Tan C W and DiBiano R 1972AIAA J. 10 923

    Article  Google Scholar 

  14. Vimala C S and Nath G 1975AIAA J. 13 711

    Google Scholar 

  15. Williams J C and Johnson W D 1974AIAA J. 12 1427

    MATH  Google Scholar 

  16. Wortman A, Zeigler H and Soo-Hoo G 1971Int. J. Heat Mass Transfer 14 149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthanna, M., Nath, G. Laminar compressible boundary layer flow at a three-dimensional stagnation point with vectored mass transfer. Proc. Indian Acad. Sci. (Math. Sci.) 87, 113–123 (1978). https://doi.org/10.1007/BF02837706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02837706

Keywords

Navigation