Laminar compressible boundary layer flow at a three-dimensional stagnation point with vectored mass transfer

  • M. Muthanna
  • G. Nath
Article

Abstract

The effect of surface mass transfer velocities having normal, principal and transverse direction components (‘vectored’ suction and injection) on the steady, laminar, compressible boundary layer at a three-dimensional stagnation point has been investigated both for nodal and saddle points of attachment. The similarity solutions of the boundary layer equations were obtained numerically by the method of parametric differentiation. The principal and transverse direction surface mass transfer velocities significantly affect the skin friction (both in the principal and transverse directions) and the heat transfer. Also the inadequacy of assuming a linear viscosity-temperature relation at low-wall temperatures is shown.

Keywords

Skin friction heat transfer vectored mass transfer noddle and saddle points variable fluid properties: parametric differentiation 

List of Symbols

a, b

velocity gradients inx andy directions, respectively

c

ratio of velocity gradients,b/a

Cfx, Cfy

skin-friction coefficients alongx andy directions, respectively

f, s

dimenionless stream functions such thatf′=u/ue ands′=v/ve

fw

mass transfer parameter,-(ρw)w/(ρeμea)1/2

g

dimensionless enthalpy,h/he

gw

cooling parameter for the wall,hw/he

h

enthalpy

Pr

Prandtl number

q

heat transfer rate

Rex

local Reynolds number,ucx/ve

St

Stanton number

T

temperature

u, v, w

velocity components alongx, y, z directions, respectively

x, y, z

principal, transverse and normal directions, respectively

η

similarity variable, (ρe/μe)1/20z (ρ/ρe)dz

μ

coefficient of viscosity

ν

kinematic viscosity

ρ

density

τx, τy

dimensional shear stress functions

ω

exponent in the power-law variation of viscosity

Superscript

′ (prime)

differentiation with respect toη

Subscripts

e

condition at the edge of the boundary layer

w

condition at the surfacez=η=0.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ackroyd J A D 1970Aeronaut. J. 74 155Google Scholar
  2. [2]
    Bourne D E and Elliston D G 1970Int. J. Heat Mass Transfer 13 583CrossRefGoogle Scholar
  3. [3]
    Gross J F and Dewey C F 1965Fluid Dynamics Trans. ed. W Fiszdon (Pergamon Press) Vol. 2, p. 529Google Scholar
  4. [4]
    Inger G R and Swean T F 1975AIAA J. 13 616MATHGoogle Scholar
  5. [5]
    Libby P A 1967AIAA J. 5 507MATHGoogle Scholar
  6. [6]
    Libby PA 1974AIAA J. 12 408Google Scholar
  7. [7]
    Na T Y and Turski C E 1974Aeronaut. Q. 23 14Google Scholar
  8. [8]
    Nath G and Muthanna M 1976AIAA J. 14 1777Google Scholar
  9. [9]
    Rubbert P E 1965 Ph.D. Thesis M.I.T. CambridgeGoogle Scholar
  10. [10]
    Rubbert P E and Landahl M T 1967Phys. Fluids 10 831MATHCrossRefGoogle Scholar
  11. [11]
    Sakiadis B C 1961A.I. Ch. E.J. 7 26–28, 221–225, 467–472Google Scholar
  12. [12]
    Scala S and Sutton G 1957Jet Propulsion 27 895Google Scholar
  13. [13]
    Tan C W and DiBiano R 1972AIAA J. 10 923CrossRefGoogle Scholar
  14. [14]
    Vimala C S and Nath G 1975AIAA J. 13 711Google Scholar
  15. [15]
    Williams J C and Johnson W D 1974AIAA J. 12 1427MATHGoogle Scholar
  16. [16]
    Wortman A, Zeigler H and Soo-Hoo G 1971Int. J. Heat Mass Transfer 14 149CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1978

Authors and Affiliations

  • M. Muthanna
    • 1
  • G. Nath
    • 1
  1. 1.Department of Applied MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations