Skip to main content
Log in

A family of Bernstein quasi-interpolants on [0,1]

  • Published:
Approximation Theory and its Applications

Abstract

Suppose that we want to approximate f∈C[0,1] by polynomials inP, using only its values on Xn={i/n, 0≤i≤n}. This can be done by the Lagrange interpolant Ln f or the classical Bernstein polynomial Bn f. But, when n tends to infinity, Ln f does not converge to f in general and the convergence of Bn f to f is very slow. We define a family of operators B (k)n , n≥k, which are intermediate ones between B (0)n =B (1)n =Bn and B (n)n =Ln, and we study some of their properties. In particular, we prove a Voronovskaja-type theorem which asserts that B (k)n f−f=O(n−[(k+2)/2]) for f sufficiently regular.

Moreover, B (k)n f uses only values of Bn f and its derivaties and can be computed by De Casteljau or subdivision algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butzer, P.L. (1953), Linear Combinations of Bernstein Polynomials, Canad. J. Math. 5, 559–567.

    MATH  MathSciNet  Google Scholar 

  2. Ciesielski, Z., Domsta, J. (1985), The Degenerate B-splines in the Space of Algebraic Polynomials, Ann. Pol. Math. 46, 71–79.

    MATH  MathSciNet  Google Scholar 

  3. Comtet, L. (1970), Analyse Combinatoire, Presses Universitaires de France, Paris.

    Google Scholar 

  4. Derriennic, M.M. (1981), Sur I'approximation de Fonctions Intégrables sur [0,1] par des Polynômes de Bernstein Modifiés, J. of Approximation Theory, 31, No 4, 325–343.

    Article  MATH  MathSciNet  Google Scholar 

  5. Derriennic, M.M. (1985), On Multivariate Approximation by Bernstein Type Polynomials, J. of Approximation Theory, 45, No 2, 155–166.

    Article  MATH  MathSciNet  Google Scholar 

  6. Ditzian, Z. et Ivanov, K. (1989), Bernstein-Type Operators and their Derivatives, Journal of Approximation Theory, 56, 72–90.

    Article  MATH  MathSciNet  Google Scholar 

  7. Ditzian, Z. and Totik (1987), Moduli of Smoothness, Springer Verlag, Berlin/New York,

    MATH  Google Scholar 

  8. Durrmeyer, J.L. (1967), Une Formule d'inversion de la Transformée de Laplace. Application a la théorie des moments, Thèse de 3e cycle, Université de Paris.

  9. Laurent, P.J. (1972), Approximation et Optimisation, Hermann, Paris.

    MATH  Google Scholar 

  10. Lorentz, G.G. (1963), Bernstein Polynomials, University of Toronto Press.

  11. Lorentz, G.G. (1963), The Degree of Approximation by Polynomials with Positive Coefficients, Math. Annalen 151, 239–251.

    Article  MATH  MathSciNet  Google Scholar 

  12. Powell, M.J.D. (1981), Approximation Theory and Methods, Cambridge University Press.

  13. Riordan, J. (1968), Combinatorial Identities, John Wiley & Sons, New York.

    MATH  Google Scholar 

  14. Sablonniere, P. (1981), Opérateurs de Bernstein-Jacobi et de Bernsein-Laguerre. Rapport ANO 37 et 38, Université de Lille 1 (Unpublished).

  15. Sablonniere, P. (1989), Bernstein Quasi-interpolants on [0,1], in Multivariate Approximation IV. I.S.N.M. Vol. 90, ed. by Birkhäuser Verlag, Basel.

  16. Sablonniere, P. (1989). Bernstein Quasi-Interpolants on a Simplex. Konstruktive Approximationstheorie, Oberwolfach (July 30–August 5, 1989). Rapport LANS 21, INSA de Rennes.

  17. Wu Zhengchang (1990), Norms of Bernstein Quasi-Interpolant Operators. Preprint, University of Siegen.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sablonniere, P. A family of Bernstein quasi-interpolants on [0,1]. Approx. Theory & its Appl. 8, 62–76 (1992). https://doi.org/10.1007/BF02836339

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02836339

Keywords

Navigation