Skip to main content
Log in

Some results on non-linear recurrence

  • Published:
Journal d’Analyse Mathematique Aims and scope

Abstract

We study the behavior of measure-preserving systems with continuous time along sequences of the form {n α}n∈#x2115;} where α is a positive real number1. Let {S t} t∈ℝ be an ergodic continuous measure preserving flow on a probability Lebesgue space (X, β, μ). Among other results we show that:

  1. (1)

    For all but countably many α (in particular, for all α∈ℚ∖ℤ) one can find anL -functionf for which the averagesA N (f)(1/N)=Σ N n=1 f(S nα x) fail to converge almost everywhere (the convergence in norm holds for any α!).

  2. (2)

    For any non-integer and pairwise distinct numbers α1, α2,..., α k ∈(0, 1) and anyL -functionsf 1,f 2, ...,f k , one has

    $$\mathop {lim}\limits_{N \to \infty } \left\| {\frac{1}{N}\sum\limits_{n - 1}^N {\prod\limits_{i - 1}^k {f_i (S^{n^{\alpha _i } } x) - \prod\limits_{i - 1}^k {\int_X {f_i d\mu } } } } } \right\|_{L^2 } = 0$$

We also show that Furstenberg’s correspondence principle fails for ℝ-actions by demonstrating that for all but a countably many α>0 there exists a setE⊂ℝ having densityd(E)=1/2 such that, for alln∈ℕ,

$$d(E \cap (E - n^\alpha )) = 0$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [BE1] V. Bergelson,Weakly mixing PET, Ergodic Theory & Dynamical Systems7 (1987), 337–349.

    MATH  MathSciNet  Google Scholar 

  • [BE2] V. Bergelson,Independence properties of continuous flows, inAlmost Everywhere Convergence, Academic Press, New York, 1989, pp. 121–130.

    Google Scholar 

  • [BE3] V. Bergelson,Ergodic Ramsey theory, Contemporary Math.75 (1987), 63–87.

    MathSciNet  Google Scholar 

  • [BOU1] J. Bourgain,On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math.61 (1988), 39–72.

    Article  MATH  MathSciNet  Google Scholar 

  • [BOU2] J. Bourgain,On the pointwise ergodic theorem on L p for arithmetic sets, Israel J. Math.61 (1988), 73–84.

    Article  MATH  MathSciNet  Google Scholar 

  • [BOU3] J. Bourgain,Almost sure convergence and bounded entropy, Israel J. Math.73 (1988), 79–97.

    Article  MathSciNet  Google Scholar 

  • [C] P. Csillag,Über die gleichmässige Verteilung nichtganzer positiver Potenzen mod 1, Acta Litt. Sci. Szeged5 (1930), 13–18.

    Google Scholar 

  • [CFS] I. Cornfeld, S. Fomin and Ya. Sinai,Ergodic Theory, Springer-Verlag, New York, 1981.

    Google Scholar 

  • [F] H. Furstenberg,Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, New Jersey, 1981.

    MATH  Google Scholar 

  • [J] R. Jones,Inequalities for pairs of ergodic transformations, Radovi Mathematički4 (1988), 55–61.

    MATH  Google Scholar 

  • [P] K. Petersen,The ergodic theorem with time compression, J. Analyse Math.51 (1988), 228–244;erratum: J. Analyse Math.55 (1990), 297.

    Article  MATH  MathSciNet  Google Scholar 

  • [R] I. Richards,An application of Galois theory to elementary arithmetics, Adv. in Math.13 (1974), 268–273.

    Article  MATH  MathSciNet  Google Scholar 

  • [W] H. Weyl,Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann.77 (1916), 313–352.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergelson, V., Boshernitzan, M. & Bourgain, J. Some results on non-linear recurrence. J. Anal. Math. 62, 29–46 (1994). https://doi.org/10.1007/BF02835947

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02835947

Keywords

Navigation