Skip to main content
Log in

Dimensions for random self—Conformal sets

  • Published:
Analysis in Theory and Applications

Abstract

A set is called regular if its Hausdorff dimension and upper box-counting dimension coincide. In this paper, we prove that the random self-conformal set is regular almost surely. Also we determine the dimensions for a class of random self-conformal sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbeiter, M., Random Recursive Construction of Self-Similar Fractal Measure, The noncompact case. Probab. Th. Rel. Fields, 88(1990), 497–520.

    Article  MathSciNet  Google Scholar 

  2. Arbeiter, M. and Patzschke, N., Random Self-Similar Multifractals, Math. Nachr. 181(1996), 5–42.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bedford, T., Hausdorff Dimension and Box Dimension in Self-Similar Sets, Proc. Conf. Topology and Measure V., Binz., GDR(1987), 17–23.

  4. Berlinkov, A. and Mauldin, R. D., Packing Measure and Dimension of Random Fractals, Preprint.

  5. Cawley, R. and Mauldin, R. D., Multifractal Decomposition of Moran Fractsls, Adv. in Math. 92(1992), 196–232.

    Article  MATH  MathSciNet  Google Scholar 

  6. Falconer, K. J., Random Fractals, Math. Proc. Cambridge Phli. Soc. 100(1986), 559–582.

    Article  MATH  MathSciNet  Google Scholar 

  7. Falconer, K. J., Dimensions and Measures of Quasi Self-Similar Sets, Proc. Amer. Math. Soc. 106(1989), 543–554.

    Article  MATH  MathSciNet  Google Scholar 

  8. Falconer, K. J., The Multifractal Spectrum of Statistically Self-Similar Measures, J. Theor. Prob. 7(1994), 681–702.

    Article  MATH  MathSciNet  Google Scholar 

  9. Falconer, K. J., Techniques in Fractal Geometry, John Wiley and Sons, Ltd, Chichester, 1997.

    MATH  Google Scholar 

  10. Graf, S., Statistically Self-Similar Fractals, Probab. th. Rel. Fields, 74(1987), 358–392.

    Article  MathSciNet  Google Scholar 

  11. Graf, S., Mauldin, R. D. and Williams, S. C., The Exact Hausdorff Dimension in Random Recursive Constructions, Mem. Amer. Math. Soc., 71(1988), no. 381.

    MathSciNet  Google Scholar 

  12. Hutschinson, J. E., Fractal and Self-Similarity, Indiana Univ. Math. J. 30(1981), 713–747.

    Article  MathSciNet  Google Scholar 

  13. Hutschinson, J. E. and Ruschendorff, L., Random Fractal Measures via the Contraction Method, Indiana Univ. Math. J., 47(1998), 471–487.

    MathSciNet  Google Scholar 

  14. Liang, J. R. and Ren, F. Y., Hausdorff Dimensions of Random net Fractals, Stoch. Process and their Appl., 74(1998), 235–250.

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, Y. Y. and Wu, J., A Dimensional Result for Random Self-Similar Sets, Preprint.

  16. Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability. Cambridge University Press, 1995.

  17. Mauldin, R. D. and Williams, S. C., Random Recursive Constuctions: Asymptotic Geometric and Topological Properties, Tran. Amer. Math. Soc. 295(1986), 325–346.

    Article  MATH  MathSciNet  Google Scholar 

  18. Patzschke, N., Self-Cconformal Multifractal Measure, Adv. Appl. Math. 19(1997), 486–513.

    Article  MATH  MathSciNet  Google Scholar 

  19. Patzschke, N., The Strong Open Set Ccondition in the Random Case, Proc. Amer. Math. Soc. 125(1997), 2119–2125.

    Article  MATH  MathSciNet  Google Scholar 

  20. Patzschke, N., Self-Conformal Multifractal Random Measure, Preprint.

  21. Patzschke, N. and Zähle, U., Self-Similar Random Measures IV.—The Rrecursive Construction Model of Falconer, Graf, and Mauldin and Williams, Math. Nachr. 149(1990) 285–302.

    MATH  MathSciNet  Google Scholar 

  22. Patzschke, N. and Zähle, M., Self-Similar Random Measures are Locally Scale Invariant, Probab. Th. Rel. Fields, 97(1993), 559–574.

    Article  MATH  Google Scholar 

  23. Takens, F., Limit Capacity and Hausdorff Dimension of Dynamically Defined Cants, Lect. Notes in Math. 1331, Springer, 1988, 196–212.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yanyan.

Additional information

This paper was presented in the Fractal Satellite Conference of ICM 2002 in Nanjing.

The research was supported by the Special Funds for Major State Basic Research Projects in China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanyan, L., Jun, W. Dimensions for random self—Conformal sets. Anal. Theory Appl. 19, 342–354 (2003). https://doi.org/10.1007/BF02835533

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02835533

Key Words

AMS(2000) subject classification

Navigation