Skip to main content
Log in

Multifractal structure and product of matrices

  • Published:
Analysis in Theory and Applications

Abstract

There is a well established multifractal theory for self-similar measures generated by non-overlapping contractive similutudes. Our report here concerns those with overlaps. In particular we restrict our attention to the important classes of self-similar measures that have matrix representations. The dimension spectra and theL q-spectra are analyzed through the product of matrices. There are abnormal behaviors on the multifractal structure and they will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [BG] Bandt, C. and Graf, S., Self-similar Sets 7, Proc. Amer. Math. Soc., 114 (1992), 995–1001.

    Article  MATH  MathSciNet  Google Scholar 

  • [BGT] Bararoux, J., Germinet, F. and Tcheremchantsev, S., Generalized Fractal Dimensions: Equivalences and Basic Properties, J. Math. Pures Appl., (2001), 977–1012.

  • [BMP] Brown, G., Michon, G. and Peyriere, J., Multifractal Analysis of Measures, J. Statist. Phys., 66 (1992), 775–790.

    Article  MATH  MathSciNet  Google Scholar 

  • [CM] Cawley, R. and Mauldin, R. D., Multifractal Decompositions of Moran Fractals, Advances in Math., 92 (1992), 196–236.

    Article  MATH  MathSciNet  Google Scholar 

  • [D] Daubechies, I., Ten lectures on wavelets, CBMS-NSF Regional Series Conf. in Appl. Math., SIAM, Phil. 1992.

  • [DL1] Daubechies, I. and Lagarias, J., Two-Scale Difference Equations II. Local Regularity, Infinite Products of Matrices and Fractals, SIAM J. Math. Anal., 23 (1992), 1031–1079.

    Article  MATH  MathSciNet  Google Scholar 

  • [DL2] Daubechies, I. and Lagarias, J., Thermodynamic Formalism for Multifractal Functions, Rev. Math. Phys., 6 (1994), 1033–1070.

    Article  MATH  MathSciNet  Google Scholar 

  • [EM] Edgar, G. and Mauldin, R., Multifractal Decompositions of Digraph Recursive Fractals, Proc. London Math. Soc., 65 (1992), 604–628.

    Article  MATH  MathSciNet  Google Scholar 

  • [Fa] Falconer, K., Fractal Geometry—Mathematical Foundation and Applications, John Wiley, New York, 1990.

    Google Scholar 

  • [FLN] Fan, A., Lau, K. S. and Ngai, S. M., Iterated Function Systems with Overlaps, Asian J. Math., 4 (2000), 527–552.

    MATH  MathSciNet  Google Scholar 

  • [FLR] Fan, A., Lau, K. S. and Rao, H., Relationships Between Different Dimensions of a Measure, Monatsh. Math., 135 (2002), 191–201.

    Article  MATH  MathSciNet  Google Scholar 

  • [F1] Feng, D. J., The Limit Rademacher Functions and Bernoulli Convolutions Associated with Pisot Numbers I, preprint.

  • [F2] Feng, D. J., The Smoothness ofL q-Spectrum of Self-Similar Measures with Overlaps, preprint.

  • [FL] Feng, D. J. and Lau, K. S., The Pressure Function for Products of Non-Negative Matrices, Math. Research Letters, 9 (2002), 363–378.

    MATH  MathSciNet  Google Scholar 

  • [FLW] Feng, D. J., Lau, K. S. and Wang, X. Y., Some Eexceptional Phenomena in Multifractal Formalism: Part II, Preprint.

  • [FO] Feng, D. J. and Olivier, E., Multifractal Analysis of the Weak Gibbs Measures and Phase Transition-Application to Some Bernoulli Convolutions, Ergod. Th. Dynam. Syst., to appear.

  • [FP] Frisch, U. and Parisi, G., On the Singularity Structure of Fully Developed Turbulence, Proc. Int. Sch. Phys., “Enrico Fermi” Course LXXXVIII, North Holland, Amsterdam, (1985) 84–88.

    Google Scholar 

  • [G] Garsia, A., Arithmetic Properties of Bernoulli Convolutions, Trans. Amer. Math. Soc., 102 (1962), 409–432.

    Article  MATH  MathSciNet  Google Scholar 

  • [GT] Germinet, F. and Tcheremchantsev, S., Generalized Fractal Dimensions on the Negative Axis for Compactly Supported Measures, preprint.

  • [GH] Geronimo, J. and Hardin, D., An Exact Formula for the Measure Dimension Associated with a Class of Piecewise Linear Maps, Constr. Approx., 5 (1989), 89–98.

    Article  MATH  MathSciNet  Google Scholar 

  • [HJ] Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I. and Shraiman, B., Fractal Measures and Their Singularities: The Characterization of Strange Sets, Phys. Rev. A, 33 (1986), 1141–1151.

    Article  MathSciNet  Google Scholar 

  • [HLR] He, X. G., Lau, K. S. and Rao, H., Self-Affine Sets and Graph—Directed Systems, Constr. Approx., to appear.

  • [Heu] Heurteaux, Y., Estimations de la Dimension Inférieure et dela Dimension Supérieure Des Mesures, Ann. Inst. H. Poincaré Prob. Stat., 34 (1998), 309–338.

    Article  MATH  MathSciNet  Google Scholar 

  • [HP] Hentschel, H. and Procaccia, I., The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors, Physica, 80 (1983), 435–444.

    MathSciNet  Google Scholar 

  • [Hu] Hu, T., The Local Dimensions of the Bernoulli Convolution Associated with the Golden Number, Tran. Amer. Math. Soc. 349 (1997), 2917–2940.

    Article  MATH  Google Scholar 

  • [HL] Hu, T. and Lau, K. S., Multifractal Structure of Convolution of the Cantor Measure, Adv. in Appl. Math., 27 (2001), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  • [HLW] Hu, T., Lau, K. S. and Wang, X. Y., On the Absolute Continuity of a Class of Invariant Measures, Proc. AMS., 130 (2001), 759–767.

    Article  MathSciNet  Google Scholar 

  • [Hut] Hutchinson, J., Fractal and Self-Similarity, Indiana Univ. Math. J., 30 (1981), 713–747.

    Article  MATH  MathSciNet  Google Scholar 

  • [J] Jia, R., Subdivision Schemes inL p-Spaces, Adv. Comp. Math., 3 (1995), 309–341.

    Article  MATH  Google Scholar 

  • [L1] Lau, K. S., Fractal Measures and Meanp-Variations, J. Funct. Anal., 108 (1992), 427–457.

    Article  MATH  MathSciNet  Google Scholar 

  • [L2] Lau, K. S., Dimension of a Family of Singular Bernoulli Convolutions, J. Funct. Anal., 116 (1993) 335–358.

    Article  MATH  MathSciNet  Google Scholar 

  • [LM] Lau, K. S. and Ma, M. F., The Regularity ofL p—Scaling Functions, Asian J. Math., 2 (1997), 272–292.

    MathSciNet  Google Scholar 

  • [LMW] Lau, K. S., Ma, M. F. and Wang, J., On Some Sharp Regularity ofL 2-Scaling Functions, SIAM J. Math. Anal., 27 (1996), 835–864.

    Article  MATH  MathSciNet  Google Scholar 

  • [LN1] Lau, K. S. and Ngai, S. M., TheL q-Dimension of the Bernoulli Convolution Associated with the Golden Ratio, Studia Math., 131 (1998), 225–251.

    MATH  MathSciNet  Google Scholar 

  • [LN2] Lau, K. S. and Ngai, S. M., Multifractal Measure and a Weak Separation Condition, Adv. in Math., 141 (1999), 45–96.

    Article  MATH  MathSciNet  Google Scholar 

  • [LN3] Lau, K. S. and Ngai, S. M.,L q-Spectrum of the Bernoulli Convolutions Associated with the P. V. Numbers, Osaka J. Math., 36 (1999), 993–1010.

    MATH  MathSciNet  Google Scholar 

  • [LN4] Lau, K. S. and Ngai, S. M., Second Order Self-Similar Identities and Multifractal Decompositons, Indiana U. Math. J., 49 (2000), 925–972.

    Article  MATH  MathSciNet  Google Scholar 

  • [LNR] Lau, K. S., Ngai, S. M. and Rao, H., Iterated Function Systems with Overlaps and Self-Similar Measures, J. London Math. Soc., 63 (2001), 99–116.

    Article  MATH  MathSciNet  Google Scholar 

  • [LW1] Lau, K. S. and Wang, X. Y., Iterated Function Systems with the Weak Separation Condition, preprint.

  • [LW2] Lau, K. S. and Wang, X. Y., Some Exceptional Phenomena in Multifractal Fomalism: Part I, preprint.

  • [LWa] Lau, K. S. and Wang, J., Characterization ofL q-Solutions for Two-Scale Dilation Equations, SIAM J. Math. Anal., 26 (1995), 1018–1046.

    Article  MATH  MathSciNet  Google Scholar 

  • [M] Mandelbrot, B., Intermittent Turbulence in Self-Similar Cascades: Divergence of High Moments and Dimension of the Carrier, J. Fluid Mech. 62 (1974), 331–358.

    Article  MATH  Google Scholar 

  • [MS] Mauldin, D. and Simon, K., The Equivalence of Some Bernoulli Convolutions and Self-Similar Measures, Proc. AMS., 126 (1998), 2733–2736.

    Article  MATH  MathSciNet  Google Scholar 

  • [N] Ngai, S. M., A Dimension Result Arising From theL q-Spectrum of a Measure, Proc. Amer. Math. Soc. 125 (1997), 2943–2951.

    Article  MATH  MathSciNet  Google Scholar 

  • [NW] Ngai, S. M. and Wang, Y., Hausdorff Dimension of Self-Similar Sets with Overlaps, J. London Math. Soc., 63 (2001), 655–672.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ng] Nguyen, N., Iterated Function Systems of Finite Type and the Weak Separation Property, Proc. AMS., 130 (2002), 483–487.

    Article  MATH  Google Scholar 

  • [PS1] Peres, Y. and Solomyak, B., Absolute Continuity of Bernoulli Convolutions, a Simple Proof, Math. Research Letter, 3 (1996), 231–239.

    MATH  MathSciNet  Google Scholar 

  • [PS2] Peres, Y. and Solomyak, B., Existence ofL q Dimensions and Entropy Dimension for Self-Conformal Measures, Indiana U. Mathematics Journal, 49 (2000), 1603–1621.

    MATH  MathSciNet  Google Scholar 

  • [PSS] Peres, Y., Schlag, W. and Solomyak, B., Sixty Years of Bernoulli Convolutions, Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998), 39–65, Prog. Prob., 46, Birhäauser, 2002.

  • [P] Pesin, Y., Dimension Theory in Dynamical Systems, Chicago, 1997.

  • [R] Riedi, R., An Improved Multifractal Formalism and Self-Similar Measures, J. Math. Anal. Appl., 189 (1995), 462–490.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ru] Ruelle, D., “Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics”, Encyclopedia Math. Appl., Vol. 5, Addison-Wesley, Reading, MA, 1978.

    MATH  Google Scholar 

  • [RW] Rao, H. and Wen, Z. Y., Some Studies of Class of Self-Similar Fractals with Overlap Structure, Adv. Applied Math., 20 (1998), 50–72.

    Article  MATH  MathSciNet  Google Scholar 

  • [S] Shmerkin, P., A modified Multifractal Formalism for a Class of Self-Similar Measures with Overlap, Preprint.

  • [St] Strichartz, R., Self-Similar Measures and Their Fourier Transforms I, Indiana University Math. J., 39 (1990), 797–817.

    Article  MATH  MathSciNet  Google Scholar 

  • [ST2] Strichartz, R., Taylor, A. and Zhang, T., Densities of Self-Similar Measures on the Line, Experimental Math., 4 (1995), 101–128.

    MATH  MathSciNet  Google Scholar 

  • [Y] Young, L. S., Dimension, Entropy and Lyapunov Exponents, Ergod. Th. and Dynam. Sys., 2 (1982), 109–124.

    Article  MATH  Google Scholar 

  • [Z] Zerner, M., Weak Separation Properties for Self-Similar Sets, Proc. AMS, 124 (1996), 3529–3539.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lau Ka-sing.

Additional information

This paper was presented in the Fractal Satellite Conference of ICM 2002 in Nanjing.

The research is supported in part by the HKRGC Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ka-sing, L. Multifractal structure and product of matrices. Anal. Theory Appl. 19, 289–311 (2003). https://doi.org/10.1007/BF02835530

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02835530

Key Words

AMS (2000) subject classification

Navigation