Skip to main content
Log in

Regional variation in the response of cerebral ornithine decarboxylase to electroconvulsive shock

  • Published:
Neurochemical Pathology

Abstract

Levels of ornithine decarboxylase activity were measured in brain regions and in adrenal glands of adult male rats exposed to electroshock. Five hours after shock at levels causing transient loss of consciousness and fore and hindlimb tonic extensor seizures, major increases in ornithine decarboxylase activity were found in adrenals, hippocampus; brain stem, frontal cortex, and cerebellum, but striatal levels were unchanged. These increases were reversed by 24 h after electroshock. When lower levels of shock, which caused no loss of consciousness, were also used, a clear dose-response relationship of shock intensity and ornithine decarboxylase activity was found for hippocampus and brain stem. The ornithine decarboxylase response in brain increased with higher shock levels. However, the changes of ornithine decarboxylase in adrenal glands were maximal at intermediate, and diminished at maximal shock values, as were levels of circulating testosterone. These data suggest a differing role for cerebral and adrenal ornithine decarboxylase in the mature rat. The brain enzyme may be primarily related to metabolic repair processes, whereas adrenal ornithine decarboxylase may function in the activation of secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnati L. F., Fuxe K., Davalli P., Zini I., Corti A., Calza L., Toffano G., Zoli M., Piccinini G., and Goldstein M. (1985) Effects of lesions and ganglioside GM1 treatment on striatal polyamine levels and dopamine neurons.Acta Physiol. Scand. 124, 499–506.

    PubMed  CAS  Google Scholar 

  • Almazan G., Pacheco P., Sourkes T. L., and Vassilieff V. A. (1983) Neurotransmitter interaction in regulation of adrenocortical ornithine decarboxylase.Eur. J. Pharmacol. 92, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Bondy S. C. (1986) Ornithine decarboxylase activity associated with a particulate fraction of brain.Neurochem. Res. 11, 1653–1662.

    Article  PubMed  CAS  Google Scholar 

  • Bondy S. C. and Hong J. S. (1987) Modulation of adrenal ornithine decarboxylase by chlordecone, p,p′DDT and permethrin.Neurotoxicology 8, 15–22.

    PubMed  CAS  Google Scholar 

  • Bondy S. C. and Walker C. (1986) Polyamines contribute to calcium-stimulated release of aspartate from brain particulate fractions.Brain Res. 371, 96–100.

    Article  PubMed  CAS  Google Scholar 

  • Charpenet G., Tache Y., Forest M. G., Haour F., Sasy J. M., Bernier M., Duchanne J. R., and Collu R. (1981) Effects of chronic intermittent immobilization stress on rat testicular androgenic function.Endocrinology 109, 1254–1257.

    Article  PubMed  CAS  Google Scholar 

  • Cousin M. A., Lando D., and Moguilewsky M. (1982) Ornithine decarboxylase induction by glucocorticoids in brain and liver of adrenalectomized rats.J. Neurochem. 38, 1296–1304.

    Article  PubMed  CAS  Google Scholar 

  • Dam A. M. (1980) Epilepsy and neuron loss in the hippocampus.Epilepsia 21, 617–629.

    Article  PubMed  CAS  Google Scholar 

  • Dam A. M. (1982) Hippocampal neuron loss in epilepsy and after experimental seizures.Acta Neurol. Scand. 66, 606–642.

    Article  Google Scholar 

  • De Kloet E. R., Cousin M. A., Veldhuis H. D., Voorhuis T. D., and Lando D. (1983) Glucocorticoids modulated the response of ornithine decarboxylase to unilateral removal of the dorsal hippocampus.Brain Res. 275, 91–98.

    Article  PubMed  Google Scholar 

  • Dienel G. A. and Cruz N. F. (1984) Induction of ornithine decarboxylase during brain recovery from metabolic, mechanical, thermal or chemical injury.J. Neurochem. 42, 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  • Engel J. (1983) Epileptic brain damage: How much excitement can a limbic neuron take?Trends Neurosci. 6, 356–357.

    Article  Google Scholar 

  • Frankel A. I. and Ryan E. L. (1981) Testicular innervation is necessary for the response of plasma testosterone levels to acute stress.Biol. Reprod. 24, 491–495.

    Article  PubMed  CAS  Google Scholar 

  • Genedani S., Bernardi M., and Bertolini A. (1984) Effect of difluoromethylornithine (DFMO) on the behavioral syndrome induced by intracerebroventricular injection of ACTH1–24 in rats.Neuropeptides 4, 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Gilad G. M. and Gilad V. H. (1983) Early rapid and transient increase in ornithine decarboxylase activity within sympathetic neurons after axonal injury.Exp. Neurol. 81, 158–166.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths T., Evans M. C., and Meldrum B. S. (1983) Intracellular calcium accumulation in rat hippocampus during seizures induced by bicuculline or allylglycine.Neuroscience 10, 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Hartlius H. (1952) Cerebral changes following electrically induced convulsions.Acta Psychiat. Neurol. Scand. Suppl. 77, 1–128.

    Google Scholar 

  • Ingvar M. and Siesjö B. K. (1983) Local blood flow and glucose consumption in the rat during sustained bicuculline-induced seizures.Acta Neurol. Scand. 68, 129–144.

    PubMed  CAS  Google Scholar 

  • Iqbal Z. and Koenig H. (1985) Polyamines appear to be second messengers in mediating Ca2+ fluxes and neurotransmitter release in potassium-depolarized synaptosomes.Biochem. Biophys. Res. Commun. 133, 563–573.

    Article  PubMed  CAS  Google Scholar 

  • Iversen L. L. and Glowinski J. (1966) Regional studies of catecholamines in the rat brain. I. The disposition of3H-norepinephrine,3H-dopamine and3H-dopa in various regions of the brain.J. Neurochem. 13, 655–669.

    Article  PubMed  Google Scholar 

  • Janne J., Holtta E., Kallio A., and Kapyaho K. (1984) Role of polyamines and their antimetabolites in clinical medicine.Special Topics Endocrinol. Metab. 5, 227–293.

    Google Scholar 

  • Kleihues P., Hossmann K. A., Pegg A. E., Kobayashi K., and Zimmerman V. (1975) Resuscitation of the monkey brain after one hour complete ischemia. III. Indications of metabolic recovery.Brain Res. 95, 61–73.

    Article  PubMed  CAS  Google Scholar 

  • Koenig H., Goldstone A. D., and Lu C. Y. (1983a) Polyamines regulate calcium fluxes in a rapid plasma membrane response.Nature 305, 530–534.

    Article  PubMed  CAS  Google Scholar 

  • Koenig H., Goldstone A. D., and Lu C. Y. (1983b) Adrenergic stimulation of Ca2+ fluxes, endocytosis, hexose transport and amino acid transport in mouse kidney cortex, is mediated by polyamine synthesis.Proc. Natl. Acad. Sci. 80, 7210–7214.

    Article  PubMed  CAS  Google Scholar 

  • Koenig H., Goldstone A. D., and Lu C. Y. (1983c) Blood-brain barrier break-down in brain edema following cold injury is mediated by microvascular polyamines.Biochem. Biophys. Res. Commun. 116, 1039–1048.

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara M. D. and Sparber S. B. (1984) Opiate withdrawal increases ornithine decarboxylase activity which is otherwise unaltered in brains of dependent chicken fetuses.Life Sci. 32, 495–502.

    Article  Google Scholar 

  • Maudsley D. V. (1979) Regulation of polyamine synthesis,Biochem. Pharmacol. 28, 153–161.

    Article  PubMed  CAS  Google Scholar 

  • McDonough J. H., Brennie E. H., Cross R., Samson F., and Nelson S. (1983) Brain regional glucose use during soman-induced seizures.Neurotoxicology 4, 203–210.

    PubMed  CAS  Google Scholar 

  • Medina J. H., Novas M. L., Wolfman C. N. V., Levi de Stein M., and De Robertis E. (1983) Benzodiazepine receptors in rat cerebral cortex and hippocampus undergo rapid and reversible changes after acute stress.Neuroscience 9, 331–335.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf B. W., Bey P., Danzin C., Jung M. J., Casara P., and Verert J. P. (1978) Catalytic irreversible inhibition of mammalian ornithine decarboxylase (EC 4.1.1.17) by substrate and product analogues.J. Am. Chem. Soc. 100, 2551–2553.

    Article  CAS  Google Scholar 

  • Nadler J. V. and Cutherbertson G. J. (1980) Kainic acid neurotoxicity toward hippocampal formation: dependence on specific excitatory pathways.Brain Res. 195, 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Pajunen A. E. I., hietala O. A., Virransalo E. L., and Piha R. S. (1978) Ornithine decarboxylase and adenosylmethionine decarboxylase in mouse brain: effect of electrical stimulation.J. Neurochem. 30, 281–283.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Gonzalez D., Widy-Tyskiewicz E., Almazan G., and Sourkes T. L. (1981) Effect of cold, restraint, reserpine and splanchnicotomy on the ornithine decarboxylase activity of rat adrenal medulla and cortex.Exp. Neurol. 73, 632–641.

    Article  PubMed  CAS  Google Scholar 

  • Richman R., Dobbins C., Voina S., Underwood L., Mahafee D., Gitelman H. J., Van Wyk J., and Ney R. L. (1973) Regulation of adrenal ornithine decarboxylase by adrenocorticotropic hormone and cyclic AMP.J. Lab. Clin. Invest. 52, 2007–2015.

    CAS  Google Scholar 

  • Russell D. H. and Snyder S. H. (1969) Amine synthesis in regenerating rat liver—extremely rapid turnover of ornithine decarboxylase.Proc. Natl. Acad. Sci. 60, 1420–1427.

    Article  Google Scholar 

  • Shaw G. G. (1979) The polyamines in the nervous system.Biochem. Pharmacol. 28, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Tilson H. A., Emerich D., and Bondy S. C. (1986) Inhibition of ornithine decarboxylase alters neurological responsiveness to a tremorigen.Brain Res. 379, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Walsh T. J., Emerich D. F., and Bondy S. C. (1987) Increases in ornithine decarboxylase following injection of specific cytotoxins into the hippocampus.Brain Res. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondy, S.C., Mitchell, C.L., Rahmaan, S. et al. Regional variation in the response of cerebral ornithine decarboxylase to electroconvulsive shock. Neurochemical Pathology 7, 129–141 (1987). https://doi.org/10.1007/BF02834213

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02834213

Index Entries

Navigation