Skip to main content
Log in

Energy-producing machinery in vasogenic brain edema

  • Published:
Neurochemical Pathology

Abstract

This paper investigates the functioning of mitochondrial energy-producing machinery in cold-induced edema and the level of energy charge available within the cell for cation transport.

Direct measurements of mitochondrial ATP production in vasogenic brain edema are carried out by testing different metabolic pathways.

In our model (freezing lesion edema), substrate level phosphorylation is not affected by the cold injury. However, when the respiratory substrates are glutamate + malate or pyruvate + malate, the inhibition of ATP production in mitochondria isolated from edematous cells reflects the decrease of oligomycin-sensitive ATPase. The larger inhibition of the succinate dehydrogenase activity seems to affect only the phosphorylations coupled to succinate oxidation.

Alternative transmembranal metabolic pathways (i.e., aspartate-malate shuttle, pyruvate cycle) bypassing the step might be operating in these edematous cells and play an important energetic role. Indeed, under in vivo conditions, the energy charge remains normal and the ATP/ADP ratio higher than normal during edema expansion.

These results are consistent with a large decrease in Na+, K+-ATPase function (Rigoulet et al., 1979), which normally uses an important part of available ATP.

We conclude that the development of intracellular edema is caused by the breakdown of Na+, K+-ATPase and not by a shortage of high energy compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AdN:

adenylic nucleotides

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

2,6-DCIP:

2,6-dichlorophenol indophenol

Pi :

inorganic phosphate

PMS:

phenazine methosulfate

iCBF:

regional cerebral blood flow

TCA:

trichloroacetic acid

References

  • Atkinson D. E. (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers.Biochemistry,7, 4030–4034.

    Article  PubMed  CAS  Google Scholar 

  • Berry M. N. (1980) The function of energy-dependent redox reactions in cell metabolism.FEBS Lett. suppl. 117, K106-K120.

    Article  Google Scholar 

  • Blakemore W. F. (1971) The ultrastructural appearance of astrocytes following thermal lesions of the rat cortex.J. Neurol. Sci. 12, 319–332.

    Article  PubMed  CAS  Google Scholar 

  • Borst P. (1963) Hydrogen transport and transport. inFunctionnelle und Morphologische Organization der Zelle (Karlson P., ed.), pp. 137–162, Springer-Verlag, Berlin.

    Google Scholar 

  • Clark J. B. and Nicklas W. J. (1970) The metablism of rat brain mitochondria: preparation and characterization.J. Biol. Chem. 245, 4724–4731.

    PubMed  CAS  Google Scholar 

  • Demopoulos H. B., Flamm E. S., Seligman M. L., Mitamura J. A., and Ransohoff J. (1979) Membrane perturbations in central nervous system injury: theoretical basis for free radical damage and a review of the experimental data. InNeural Trauma (Popp A.J., Bourke R.S., Nelson L.R., and Kimelberg, H.K., eds.), pp. 63–78. Raven Press, New-York.

    Google Scholar 

  • Dennis S. C. and Clark J. B. (1978) The regulation of glutamate metabolism by tricarboxylic acid cycle activity in rat brain mitochondria.Biochem. J. 172, 155–162.

    PubMed  CAS  Google Scholar 

  • Frei H. J., Wallenfang Th., Poll W., Reulen H. J., Schubert R., and Brock M. (1973) Regional cerebral flow and regional metabolism in cold-induced edema.Acta Neurochir. 29, 15–28.

    Article  CAS  Google Scholar 

  • Go K. G., Zijlstra W. G., Flanderijn H., and Zuiderveen F. (1974) Circulatory factors influencing exudation in cold-induced cerebral edema.Exp. Neurol. 42, 332–338.

    Article  PubMed  CAS  Google Scholar 

  • Golberg N. D., Passonneau J. V., and Lowry O. H. (1966) Effects of changes in brain metabolism on the levels of citric acid cycle intermediates.J. Biol. Chem. 241, 3997–4003.

    Google Scholar 

  • Grote J., Reulen H. J., and Schubert R. (1978) Increased tissue water in the brain influence on regional cerebral blood flow and oxygen supply.Adv. Neurol. 20, 333–339.

    PubMed  CAS  Google Scholar 

  • Holian A., Owen C. S., and Wilson D. F. (1977) Control of respiration in isolated mitochondria: quantitative evaluation of the dependence of respiratory rates on (ATP), (ADP) and (Pi).Arch. Biochem. Biophys. 181, 164–171.

    Article  PubMed  CAS  Google Scholar 

  • Holian A. and Wilson D. F. (1980) Relationship of transmembrane pH and electrical gradients with respiration and ademine 5′-triphosphate synthesis in mitochondria.Biochemistry 19, 4213–4221.

    Article  PubMed  CAS  Google Scholar 

  • Keesey J. C. and Wallgren H. (1965) Movements of radioactive sodium in cerebral cortex slices in response to electrical stimulation.Biochem. J. 95, 301–310.

    PubMed  CAS  Google Scholar 

  • Klatzo I., Wisniewski H., and Smith D. E. (1965) Observations on penetration of serum proteins into the central nervous system. InProgress in Brain Research, Vol. 15, Biology of Neuroglia (De Robertis E. D. P. and Carrea R., eds.) pp. 73–88, Elsevier, Amsterdam.

    Google Scholar 

  • Klatzo I. (1967) Neuropathological aspects of brain edema.J. Neuropath. Exp. Neurol. 26, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Klatzo I., Chui E., Feijiwara K., and Spatz M. (1980) Resolution of vasogenic brain edema. InAdvances in Neurology, Vol. 28, Brain Edema (Cervos-Navarro J. and Ferszt R., eds.) pp. 359–373, Raven Press, New York.

    Google Scholar 

  • Lee J. C. and Bakay L. (1966) Ultrastructural changes in edematous central nervous system.Arch. Neurol. 14, 36–49.

    PubMed  CAS  Google Scholar 

  • Ljunggren B., Schutze H., and Siesjö B. K. (1974) Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia.Brain Res. 73, 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Passonneau J. V., Hasselberger F. X., and Schulz H. (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain.J. Biol. Chem. 239, 18–30.

    PubMed  CAS  Google Scholar 

  • Lundin A., Richardsson A., and Thore A. (1976) Continuous monitoring of ATP-converting reactions by purified firefly luciferase.Anal. Biochem. 75, 611–620.

    Article  PubMed  CAS  Google Scholar 

  • Marmarou A., Takagi H., and Shulman K. (1980) Biomechanics of brain edema and effects on local cerebral blood flow. in:Advances in Neurology, Vol. 28, Brain Edema (Cervos-Navarro J. and Ferszt R., eds.), pp. 345–358, Raven Press, New York.

    Google Scholar 

  • Meijer A. J. and Van Dam K. (1974) The metabolic significance of anion transport in mitochondria.Biochim. Biophys. Acta 364, 213–244.

    Google Scholar 

  • Nelson S. R. and Mantz M. L. (1971) Energy reserve levels in edematous mouse brain.Exp. Neurol. 31, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls D. G. and Bernson S. M. (1977) Interrelationships between proton electrochemical gradient, adeninenucleotide phosphorylation potential and respiration, during substrate level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs.Eur. J. Biochem. 75, 601–612.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K., Itada N., Kuno S., Seta K., Handa H., and Araki C. (1966) Biochemical studies on brain swelling. I. Changes in respiratory control, 2,4-dinitrophenol induced ATPase activity and phosphorylation. Correlation between brain swelling and mitochondrial function.Folia Psychiatr. Neurol. Japonica 20, 57–72.

    CAS  Google Scholar 

  • Reulen H. J., Medzihrady F., Enzenbach R., Marguth F., and Brendel W. (1969) Electrolytes, fluids, and energy metabolism in human cerebral edema.Arch. Neurol. 21, 517–525.

    PubMed  CAS  Google Scholar 

  • Reulen H. J. (1976) Vasogenic brain edema. New aspects in its formation, resolution and therapy.Br. J. Anaesth. 48, 741–752.

    Article  PubMed  CAS  Google Scholar 

  • Ridge J. W. (1972) Hypoxia and the energy charge of the cerebral adenylate pool.Biochem. J. 127, 351–355.

    PubMed  CAS  Google Scholar 

  • Rigoulet M., Guerin B., Cohadon F., and Vandendriessche M. (1979) Unilateral brain injury in the rabbit: reversible and irreversible damage of the membranal ATPases.J. Neurochem. 32, 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Robinson B. H., Williams G. R., Halperin M. L., and Leznoff C. C. (1971) The sensitivity of the exchange reactions of tricarboxylate, 2-oxoglutarate and dicarboxylate transporting systems of rat liver mitochondria to inhibition by 2-pentylmalonate,p-iodobenzylmalonate and benzene 1,2,3-tricarboxylate.Eur. J. Biochem. 20, 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal M., Martel D., Lamanna J. C., and Jobsis F. F. (1976)In situ studies of oxidative energy metabolism during transient cortical ischemia in cats.Exp. Neurol. 50, 477–494.

    Article  PubMed  CAS  Google Scholar 

  • Sato K., Yamaguichi M., Mullan S., Evan J. P., and Ishii S. (1969) Brain edema a study of biochemical and structural alterations.Arch. Neurol. 21, 413–424.

    PubMed  CAS  Google Scholar 

  • Singer T. P., Rocca E. and Kearney E. B. (1966) Fumarate reductase, succinate and NADH dehydrogenase of yeast: properties and biosynthesis. InFlavins and Flavoproteins (Slater B. C., ed.), pp. 391–426, Elsevier, Amsterdam, London, New York.

    Google Scholar 

  • Sutton L. N., Welsh F., and Bruce D. A. (1980) Bioenergetics of acute vasogenic edema.J. Neurosurg. 53, 470–476.

    PubMed  CAS  Google Scholar 

  • Veech R. L., Lawson J. W. R., Cornell N. W., and Krebs H. A. (1979) Cytosolic phosphorylation potential.J. Biol. Chem. 254, 6538–6547.

    PubMed  CAS  Google Scholar 

  • Whittam R. (1962) The dependence of the respiration of brain cortex on active cation transport.Biochemistry 82, 205–212.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigoulet, M., Averet, N. & Cohadon, F. Energy-producing machinery in vasogenic brain edema. Neurochemical Pathology 1, 43–57 (1983). https://doi.org/10.1007/BF02834131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02834131

Index Entries

Navigation