Skip to main content
Log in

Ignition and combustion of ferrous metals in high pressure, high velocity, gaseous oxygen

  • Published:
Journal of Materials for Energy Systems

Abstract

The ignition-burn conditions of several ferrous metals, including AISI1025, AISI 4140, ductile iron and 304, 410, 17-4 PH, and CA15 stainless steels have been determined. The oxygen conditions involved velocities of approximately 430 meters per second (1400 feet per second) and pressures of 20 to 68 atm (300 to 1000 psig). When 1025 steel specimens were fractured in 68 atm (1000 psig), 427 mps (1400 fps) oxygen, this steel was found to ignite and burn at a nominal temperature of about 480 K (400 °F). Under similar conditions, AISI 4140 ignited at about 590 K (600 °F) and ductile cast iron ignited at a temperature of (530 K (200 °F) or less. Stainless steels (304, 17-4 PH, and CA15) ignited at about 590 K (600 °F) and 410 stainless steel, which appeared more resistant to ignition, was found to ignite at about 645 K (700 °F). The ignition temperature was observed to increase for all materials as the oxygen pressure was reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oxygen Compressors and Pumps Symposium, Atlanta, Georgia, Nov. 9–11, 1971, Compressed Gas Association, Inc.

  2. M. D. Hersey:American Society of Naval Engineers, 1924, Vol. 36, pp. 231–243.

    Google Scholar 

  3. W. C. Reynolds: NASA Tech. Note TND-182, October 1959.

  4. Paul R. Hill, David Adamson, Douglas H. Foland, and Walter E. Bressette: National Advisory Committee for Aeronautics Research Memorandum, NACA RM L55L23b.

  5. L. E. Dean and W. R. Thompson:ARS Journal, July 1961, pp. 917–923.

  6. A. H. Tench, Hans M. Roder, and A. F. Clark:Combustion of Metals in Oxygen—Phase II: Bulk Burning Experiments, NBSIR 73:345, December 1973.

    Google Scholar 

  7. L. Kirschfeld:Archiv Eisenhuttenw., September 1962, Vol. 33, pp. 617–621.

    CAS  Google Scholar 

  8. L. Kirschfeld:Archiv Eisenhuttenw., July 1968, Vol. 39, pp. 535–539.

    CAS  Google Scholar 

  9. L. Kirschfeld:Archiv Eisenhuttenw., July 1968, Vol. 39, pp. 823–826.

    Google Scholar 

  10. L. Kirschfeld:Angew Chem., 1959, Vol. 71, pp. 663–667.

    Article  CAS  Google Scholar 

  11. L. Kirschfeld:Metall, February 1967, Vol. 21, pp. 98–102.

    CAS  Google Scholar 

  12. L. Kirschfeld:Metall, 1960, Vol. 14, pp. 213–219.

    CAS  Google Scholar 

  13. L. Kirschfeld:Metall, August 1960, pp. 792–796.

  14. L. Kirschfeld:Archiv Eisenhuttenw., January 1961, Vol. 32, pp. 57–62.

    Google Scholar 

  15. L. Kirschfeld:Metall, September 1961, Vol. 15, pp. 873–878.

    CAS  Google Scholar 

  16. P. L. Harrison and A. D. Yoffe:Proceedings of Royal Society, Vol. 261A, pp. 537–370.

  17. G. J. Nihart and C. P. Smith: AMRL-TDR-64-76, Union Carbide Corp., Linde Div., October 1964.

  18. W. A. Riehl, C. F. Key, and J. B. Gayle: NASA Tech. Report R-180.

  19. “Reactivity of Metals with Liquid and Gaseous Oxygen,” DMIC, Battelle Memorandum 163, January 15, 1963.

  20. Lewis Greenspan:Review of Scientific Instruments, February 1958, Vol. 29, pp. 172–173.

    Article  CAS  Google Scholar 

  21. Robert J. Schwinghamer and Carlo F. Key: NASA TMX-64899, November 29, 1974.

  22. C. F. Key, J. C. Austin, and J. W. Bransford: NASA TMX-64783, September 1973.

  23. D. L. Pippen and J. S. Stradling:Material Research and Standards, June 1971, Vol. 53, pp. 35–53.

    Google Scholar 

  24. C. F. Key:Materials Research and Standards, June 1971, Vol. 11, pp. 28–51.

    CAS  Google Scholar 

  25. C. F. Key:Compatibility of Materials with LOX—Vol. I, NASA TMX-64711, October 1972.

  26. W. R. Blackstone, B. B. Baber, and P. M. Ku: Southwest Research Institute, AFAPL TR-67-41, December 1967.

  27. R. J. Schwinghamer: NASA TMX-64634, January 4, 1972.

  28. Jack L. Christian, James E. Chafey, Abraham Hurlich, James F. Watson, and William E. Witzell:Metal Progress, April 1963, pp. 100–103, 122–123.

  29. A. A. Wells:British Welding Journal, September 1955, pp. 392–400.

  30. H. Bauer, W. Wegener, and K. F. Windgassen:Cryogenics, June 1970, Vol. 10, pp. 241–248.

    Article  Google Scholar 

  31. H. Bauer, W. Wegener, and K. F. Windgassen:Cryogenics, December 1971, Vol. 11, pp. 469–476.

    Article  CAS  Google Scholar 

  32. F. E. Littman, F. M. Church, and E. M. Kinderman:Journal of Less Common Metals, 1961, Vol. 3, pp. 367–378.

    Article  CAS  Google Scholar 

  33. I. Glassman et al: NATO AGARD Annual Meeting, February 1970, Conference Proceedings No. 52, pp. 19 (1–30).

  34. O. Kubaschewski and E. Evans:Metallurgical Thermochemistry, Pergamon Press, Oxford, 1958.

    Google Scholar 

  35. K. K. Kelley: Bulletin 584, Bureau of Mines, 1960.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, C.E., Wren, J.E., Monroe, R. et al. Ignition and combustion of ferrous metals in high pressure, high velocity, gaseous oxygen. JMES 1, 61–76 (1979). https://doi.org/10.1007/BF02833991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02833991

Keywords

Navigation