Journal of Materials Shaping Technology

, Volume 8, Issue 3, pp 193–202

Determination of heat transfer coefficient for forging applications

  • Vinod K. Jain

DOI: 10.1007/BF02833814

Cite this article as:
Jain, V.K. J. Materials Shaping Technology (1990) 8: 193. doi:10.1007/BF02833814


A setup for measuring the contact heat transfer coefficient between a tool steel die and a specimen was designed, developed, and fabricated. A microcomputer was programmed to collect and process the temperature data. Tests were conducted under dry and lubricated conditions at different temperatures and pressures on four aluminum alloys, namely, 2024-T4, 2024-O, 6061-O, and 1100-O. MoS2 was used as the lubricant. Results indicate that the heat transfer coefficient increases with pressure and decreases with specimen yield strength. Variation in heat transfer coefficient with temperature is due to chemical changes which occur in the lubricant at the test temperature. The heat transfer coefficient was an order of magnitude greater at high pressures than at nominally zero pressure.

Copyright information

© Springer-Verlag New York Inc 1990

Authors and Affiliations

  • Vinod K. Jain
    • 1
  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of DaytonDaytonUSA

Personalised recommendations