Skip to main content
Log in

Relationship between quenching process, hardness depth and quench defects in steels

Journal of Heat Treating

Abstract

Quenching is the most critical stage in the heat treating of steels for it determines both the metallurgical quality of the part and the existence of defects (cracks, distortion, residual stresses). The usual way of choosing the quenching technique is the result of a compromise between a good hardness depth and the absence of defects. Analysis of the effects of cooling processes on i) the transformations of steel and ii) the mechanism of formation of internal stresses, clearly shows that these two phenomena are situated in different temperature ranges. Fast cooling rates are obtained with vaporizable quenching media (water, aqueous solutions, oils); it is therefore possible to fit the cooling curve of a part by controlling the vaporization process of the quenching medium. As a result of these considerations, heat treatment processes have been developed which allow an increase of hardness and a decrease in quench defects. It is then possible to use advantageously low alloy steels. Examples of how these concepts hgave been used to solve production problems, in the treatment of carbonitrided parts and springs, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. Beck and J. C. Chevrier:Int. J. Heat Mass Transfer, 1971, vol. 14, pp. 1731–1745.

    Article  CAS  Google Scholar 

  2. C. Dumont, F. Moreaux, A. Simon, and G. Beck:Trait. Thermique, 1975, vol. 94, no. 94, pp. 81–90.

    Google Scholar 

  3. J. C. Chevrier, F. Moreaux and G. Beck:Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 1631–1645.

    Article  CAS  Google Scholar 

  4. C. Dumont, F. Moreaux, A. Simon, and G. Beck:Trait. Thermique, 1975, no. 95, pp. 67–75.

  5. A. Bühler and A. Rose:Arch. Eisenhuttenwes., 1969, no. 5, pp. 411–22.

  6. Y. Toshioka, M. Fukagawa, and Y. Saiga:Trans. Iron Steel Inst. Jpn., 1972, vol. 12, pp. 6–15.

    Google Scholar 

  7. M. Amestoy, J. Guisti, and D. Radenkovic:Rev. Metall., 1978, vol. 75, pp. 202–10.

    Google Scholar 

  8. A. J. Flechter:Met. Technol., 1977, no. 6, pp. 307–16.

  9. H. Fujio, T. Aida, and Y. Masumoto:Bull. JSME, 1977, vol. 20, pp. 1051–58.

    CAS  Google Scholar 

  10. T. Inoue and B. Raniecki:J. Mech. Phys. Solids, 1978, vol. 26, pp. 187–212.

    Article  CAS  Google Scholar 

  11. H. J. Yu, Wolfstieg, and E. Macherauch:Arch. Eisenhuttenwes., 1978, vol. 49, pp. 499–504.

    Google Scholar 

  12. B. Hildenwall and T. Ericsson:Hardenability Concepts with Application to Steel, D. V. Doane and J. S. Kirkalody, eds., p. 579, 1977.

  13. S. Denis, J. C. Chevrier, A. Simon, and G. Beck:Mem. Sci. Rev. Metall., 1979, vol. 76, pp. 221–33.

    CAS  Google Scholar 

  14. E. Gautier, A. Simon, and G. Beck:Strength of Metals and Alloys, p. 867, Pergamon Press, 1979.

  15. A. Simon, E. Gautier, G. Collette, and G. Beck:Bull. Cercle Etudes Met., 1979, vol. 14, pp. 1–17.

    Google Scholar 

  16. J. Garillot, A. Simon, and G. Beck:Trait. Thermique, 1979, no. 5, pp. 39–42.

  17. A. Simon, A. Lorenzo, G. Beck, and A. Lallemant:Mem. Sci. Rev. Metall., 1974, vol. 71, pp. 351–69.

    Google Scholar 

  18. A. Simon, A. Lorenzo, G. Beck, and G. Meynet:Mem. Sci. Rev. Metall., 1974, vol. 71, pp. 823–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreaux, F., Simon, A. & Beck, G. Relationship between quenching process, hardness depth and quench defects in steels. J. Heat Treating 1, 50–56 (1980). https://doi.org/10.1007/BF02833038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02833038

Keywords

Navigation