Skip to main content
Log in

A molecular approach to the identification and individualization of human and animal cells in culture: Isozyme and allozyme genetic signatures

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

The electrophoretic resolution of a group of geneticallymonomorphic gene-enzyme systems that are developmentally and biologically ubiquitous has been used to provide a species-specific and type-specific biochemical characterization of various cultured cells. The relative mobilities of gene-enzyme systems representing nine distinct gene products from cell cultures of 25 species fromDrosophils to man are presented. These isoenzymes effectively discriminate interspecies cell-to-cell contamination and almost invariably serve to identify the contaminating species. The resolution of eightpolymorphic gene-enzyme systems in human cell cultures provides a virtually unique allozyme genetic signature as a monitor of intraspecies cellular contamination. The genetic signatures of 47 commonly used human cells are presented. Included in the test were seven putative HeLa (human cervical carcinoma) contaminants each of which expressed a signature identical with that of HeLa. The probability that an unrelated human cell line will have a signature identical to a typed cell is computed for each line from the genotypic frequencies at each locus in a population of cultured human cells. The gene frequencies of this cell population are comparable to the same frequencies in natural human populations. The most common human signature has a frequency (and therefore a probability) of 0.02. The majority of the 17,010 possible signatures are far less probable. A calculation of the theoretical incidence of chance matching of signatures within test groups of two or more individuals is presented. The probability of a chance match between any two randomly selected individuals is 0.004 and among five randomly selected individuals is 0.034. The allozyme genetic signature represents a definitive monitor of cell identity and is presented as a standard of cell and tissue identification for a variety of biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gartler, S. 1967. Genetic markers as tracers in cell culture. Cancer Inst. Monogr. 26: 167–195.

    CAS  Google Scholar 

  2. Nelson-Rees, W. A., and R. R. Flandermeyer. 1976. HeLa cultures defined. Science 191: 96–98.

    Article  PubMed  CAS  Google Scholar 

  3. O'Brien, S. J., G. Kleiner, R. Olson, and J. E. Shannon. 1977. Enzyme polymorphisms as genetic signatures in human cell cultures. Science 195: 1345–1348.

    Article  PubMed  Google Scholar 

  4. Povey, S., D. A. Hopkinson, H. Harris, and L. M. Franks. 1976. Characterization of human cell lines and differentiation from HeLa by enzyme typing. Nature 264: 60–62.

    Article  PubMed  CAS  Google Scholar 

  5. Fogh, J., W. C. Wright, and J. D. Loveless. 1977. Absence of HeLa contamination in 169 cell lines derived from human tumors. J. Natl. Cancer Inst. 58: 209–214.

    PubMed  CAS  Google Scholar 

  6. Nelson-Rees, W. A., and R. R. Flandermeyer. 1977. Inter- and intra-species contamination of human breast tumor cell lines HBC and BrCa5 and other cell lines. Science 195: 1343–1344.

    Article  PubMed  CAS  Google Scholar 

  7. Hsu, S. H., B. Z. Schacter, N. L. Delaney, T. B. Miller, V. A. McKusick, R. H. Kennett, J. G. Bodmer, D. Young, and W. F. Bodmer. 1976. Genetic characteristics of the HeLa cell. Science 191: 392–394.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrone, S., and K. K. Mittal. 1976. Identification of human cultured cell lines using histocom-patibility (HLA) markers. Proc. Workshop Cell Substrate Vaccine Production. Bur. Biologics, FDA, NIH: 59–70.

  9. Pathak, S., M. J. Siciliano, R. Cailleau, C. L. Wiseman, and T. C. Hsu. 1979. A human breast adenocarcinoma with chromosome and isoenzyme markers similar to those of the HeLa line. J. Natl. Cancer Inst. 62: 263–272.

    PubMed  CAS  Google Scholar 

  10. Lewontin, R. C. 1973. The genetic basis of exolutionary change. Columbia University Press, New York.

    Google Scholar 

  11. Prakash, S., R. C. Lewontin, and J. L. Hubby. 1969. A molecular approach to the study of genic heterozygosity in natural populations. IV. Patterns of genic variation in central, marginal and isolated populations ofD. pseudobscura. Genetics 61: 841–858.

    PubMed  CAS  Google Scholar 

  12. Harris, H., and D. A. Hopkinson. 1976. Handbook of enzyme electrophoresis in human genetics. North Holland Publishing Co., Amsterdam.

    Google Scholar 

  13. O'Brien, S. J., and R. J. MacIntyre. 1978. Genetics and biochemistry of enzymes and specific proteins ofDrosophia. In: T. R. F. Wright and M. Ashburner (Eds.),Genetics and Biology of Drosophila. Vol. 2A. Academic Press, London, pp. 394–551.

    Google Scholar 

  14. O'Brien, S. J., J. M. Simonson, and S. Davis. 1978. Deposition of retrovirus-associated antigens (p30 and gp70) on cell membranes of feline and murine leukemia virus infected cells. J. Gen. Virol. 38: 483–496.

    Article  PubMed  Google Scholar 

  15. Patillo, R. A., and A. C. F. Reichert. 1974. Establishment of a continuous line of human breast cancer cells in vitro (abstr.). In Vitro 9: 382.

    Google Scholar 

  16. Patillo, R. A., R. O. Hussa, M. T. Story, A. C. F. Reichert, M. R. Shalaby, and R. F. Mattingly. 1976. Tumor antigen and human chorionic gonadotropin in CaSki cells: A new epithelioid cervical carrier cell line. Science 196: 1456–1458.

    Article  Google Scholar 

  17. Engel, L. W., N. A. Young, T. S. Tralka, M. E. Lippman, S. J. O'Brien, and M. J. Joyce. 1978. Human breast carcinoma cells in continuous culture: establishment and characterization of three new cell lines. Cancer Res. 38: 3352–3364.

    PubMed  CAS  Google Scholar 

  18. Shaw, C. R., and R. Prasad. 1970. Starch gel electrophoresis of enzymes—a compilation of recipes. Biochem. Genet. 4: 297–320.

    Article  PubMed  CAS  Google Scholar 

  19. Nichols, E. A., and F. H. Ruddle. 1973. A review of enzyme polymorphism, linkage and electrophoretic conditions for mouse and somatic cell hybrids in starch gels. J. Histochem. Cytochem. 21: 1066–1081.

    PubMed  CAS  Google Scholar 

  20. Weitkamp, L. 1976. Linkage of GLO with HLA and Bf. effect of population and sex on recombination frequency. Tissue Antigens 7: 273–279.

    Article  PubMed  CAS  Google Scholar 

  21. Parr, C. W., I. A. Bagster, and S. G. Welch. 1977. Human red cell glyoxylase-I polymorphism. Biochem. Genet. 15: 109–115.

    Article  PubMed  CAS  Google Scholar 

  22. Turner, B. M., R. A. Fisher, and H. Harris. 1975. Post translational alterations of human erythrocyte enzymes. In: C. Markert (Ed.).Isozymes Vol. I.Molecular Structure. Academic Press, New York, p. 781–795.

    Google Scholar 

  23. Montes de Oca, F., M. L. Macy, and J. E. Shannon. 1969. Isozyme characterization of animal cell cultures. Proc. Soc. Exp. Biol. Med. 132: 462–469.

    PubMed  CAS  Google Scholar 

  24. Powell, J. R. 1976. Protein variation in natural populations of animals. In: T. Dobzhansky, M. K. Hecht, and W. C. Steere (Eds.),Ecolutionary Biology, Vol. 8., pp. 79–119.

  25. Harris, H. 1977. Enzyme polymorphisms demonstrable by electrophoresis in human populations. Isozyme Bull. 10: 22–25.

    Google Scholar 

  26. Harris, H., and D. A. Hopkinson. 1972. Average heterozygosity per locus in man: an estimate based on the incidence of enzyme polymorphisms. Ann. Hum. Genet. 36: 9–19.

    Article  PubMed  CAS  Google Scholar 

  27. Koch, G., and T. B. Shows. 1978. A gene on human chromosome 6 functions in assembly of tissue-specific adenosine deaminase isozymes. Proc. Natl. Acad. Sci. U.S.A. 75: 3876–3880.

    Article  PubMed  CAS  Google Scholar 

  28. Cavalli-Sforza, L., and W. Bodmer, 1971.The Genetics of Human Populations. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  29. Lemons, R. S., W. G. Nash, S. J. O'Brien, R. E. Benveniste, and C. J. Sherr. 1978. A gene (Bevi) on human chromosome 6 is an integration site for baboon type C provirus in human cells. Cell 14: 995–1005.

    Article  PubMed  CAS  Google Scholar 

  30. Gail, M., G. Weiss, N. Mantel, and S. O'Brien. 1979. A solution to the generalized birthday problem with application to allozyme screening for cell culture contamination. J. Appl. Probability 16: 242–251.

    Article  Google Scholar 

  31. Auersperg, N., and S. Gartler. 1970. Isozyme stability in human heteroploid cell lines. Exp. Cell Res. 61: 465–467.

    Article  PubMed  CAS  Google Scholar 

  32. Povey, S., S. E. Gardiner, B. Watson, S. Mowbray, H. Harris, E. Arthur, C. M. Steel, C. Blenkinsop, and H. J. Evans. 1973. Genetic studies on human lymphoblastoid lines: Isozyme analysis on cell lines from 41 different individuals and on mutants produced following exposure to a chemical mutagen. Ann. Hum. Genet. 36: 247–267.

    Article  PubMed  CAS  Google Scholar 

  33. Gartler, S. 1968. Apparent HeLa cell contamination of human heteroploid lines. Nature 217: 750–751.

    Article  PubMed  CAS  Google Scholar 

  34. O'Brien, S. J., N. Takeichi, and C. W. Boone. 1980. A molecular genetic estimation of cellular gene dysfunction in chemically transformed fibroblasts. Manuscript in preparation.

  35. Nelson-Rees, W. A. 1978. The identification and monitoring of cell line specificity. In: Origin and Natural History of Cell Lines. Alan R. Liss, Inc., New York, N.Y., pp. 25–79.

    Google Scholar 

  36. Taylor, B. A. 1972. Genetic relationships between inbred strains of mice. J. Hered. 63: 83–86.

    PubMed  CAS  Google Scholar 

  37. Roderick, T. H., F. H. Ruddle, V. M. Chapman, and T. B. Shows. 1971. Biochemical polymorphisms in feral and inbred mice (Mus musculus). Biochem. Genet. 5: 457–466.

    Article  PubMed  CAS  Google Scholar 

  38. Krog, H. H. 1976. Identification of inbred strains of mice,Mus musculus. I. Genetic control of mice using starch gel electrophoresis. Biochem. Genet. 14: 319–326.

    Article  PubMed  CAS  Google Scholar 

  39. Lalley, P. A. 1978. Human biochemical genetic map. Isozyme Bull. 11: 13–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the Virus Cancer Program of the National Cancer Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, S.J., Shannon, J.E. & Gail, M.H. A molecular approach to the identification and individualization of human and animal cells in culture: Isozyme and allozyme genetic signatures. In Vitro 16, 119–135 (1980). https://doi.org/10.1007/BF02831503

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02831503

Key words

Navigation