Skip to main content
Log in

Oscillating thermocapillary convection regimes driven by a point heat source

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The stability of an axisymmetric thermocapillary flow driven by a point heat source located in the neighborhood of the free surface of a fluid filling a deep tank is investigated theoretically and experimentally. It is shown that for certain values of the depth and power of the heat source thermocapillary convection becomes unstable with respect to oscillating perturbations of the surface shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Bezuglyi, E. A. Galashin, D. P. Krindach, and V. S. Maiorov, “Admixture separation in a fluid under the thermal action of laser radiation,”Pis’ma v Zh. Tekn. Fiz.,2, 832 (1976).

    Google Scholar 

  2. B. A. Bezuglyi and E. A. Galashin, “Thermotensography — a new method of obtaining images,”Zh. Nauch. Prikl. Foto- i Kinematografii,27, 69 (1982).

    Google Scholar 

  3. I. B. Borovskii, D. D. Gorodskii, I. M. Sharafeev, and S. F. Moryashchev, “Surface metal alloying using continuous laser radiation,”Fiz. Khim. Obrab. Mater., No. 1, 19 (1984).

  4. N. D. DiPietro, C. Huh, and R. G. Cox, “The hydrodynamics of the spreading of one liquid on the surface of another,”J. Fluid Mech.,84, 529 (1978).

    Article  MATH  ADS  Google Scholar 

  5. G. Z. Gershuni and E. M. Zhukhovitskii,Convective Stability of an Incompressible Fluid [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  6. E. Favre, L. Blumenfeld, and F. Daviaud, “Instabilities of a liquid layer locally heated on its surface,”Phys. Fluids,9, 1473 (1997).

    Article  ADS  Google Scholar 

  7. A. V. Ezersky, A. Garcimartin, H. L. Mancini, and C. Perez-Garcia, “Spatiotemporal structure of hydrothermal waves in Marangoni convection,”Phys. Rev. E,48, 4414 (1993).

    Article  ADS  Google Scholar 

  8. A. V. Ezersky, A. Garcimartin, J. Burguete et al., “Hydrothermal waves in Marangoni convection in a cylindrical container,”Phys. Rev. E,47, 1126 (1993).

    Article  ADS  Google Scholar 

  9. Y. Kamotani, A. Chang, and S. Ostrach, “Effects of heating mode on steady axisymmetric thermocapillary flows in microgravity,”Trans. ASME. J. Heat Transfer,118, 191 (1996).

    Google Scholar 

  10. Yu. K. Bratukhin and S. O. Makarov, “Secondary thermocapillary motions of soliton type,”Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 20 (1992).

  11. V. Shtern and F. Hussain, “Azimuthal instability of divergent flows,”J. Fluid Mech.,256, 535 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. A. F. Pshenichnikov and G. A. Tokmenina, “Deformation of the free surface of a fluid by thermocapillary motions,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 150 (1983).

  13. V. V. Nizovtsev, “Investigation of natural convection stimulated by local radiation in a thin evaporating liquid layer,”Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 138 (1989).

  14. V. V. Nizovtsev, “Capillary convection in a liquid layer under laser radiation,”Inzh.-Fiz. Zh.,55, 85 (1988).

    Google Scholar 

  15. A. I. Rusanov and V. A. Prokhorov,Interphase Strain Measurement [in Russian], Khimiya, Saint-Petersburg (1994).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz,Continuum Mechanics [in Russian], Gostekhizdat, Moscow (1954).

    Google Scholar 

  17. G. A. Korn and T. M. Korn,Mathematics Handbook for Scientists and Engineers, McGraw-Hill, New York, Toronto, London (1961).

    Google Scholar 

Download references

Authors

Additional information

Perm’, Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 92–103, March–April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratukhin, Y.K., Makarov, S.O. & Mizyov, A.I. Oscillating thermocapillary convection regimes driven by a point heat source. Fluid Dyn 35, 232–241 (2000). https://doi.org/10.1007/BF02831431

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02831431

Keywords

Navigation