Skip to main content
Log in

A torsion potential

Торснонный потенциал

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Introducing a potential for the torsion via a kind of «metricity condition», we reinterpret some torsion theories as theories with gravity and matter in an ordinary Riemannian geometry. In one example we show how antisymmetric-gauge matter coupled to gravitation can be described in this way by using both a first-and a second-order action. We also discuss how spontaneous compactification of a Kaluza-Klein theory in seven dimensions can be obtained by using such a potential.

Riassunto

Introducendo un potenziale per la torsione attraverso un tipo di «condizioni di metricità», si reinterpretano alcune teorie sulla torsione come teorie con gravità e materia in una geometria ordinaria di Riemann. In un esempio si mostra come la materia di gauge antisimmetrico accoppiata alla gravitazione può essere descritta in questo modo usando sia un'azione di primo ordine che una di secondo ordine. Si discute anche come la compattificazione spontanea di una teoria di Kaluza-Klein in sette dimensioni può essere ottenuta usando un tale potenziale.

Резюме

Вводя потенциал для кручения через вид «условия метричности», мы заново интерпретируем некоторые торсионные теории, как теории с гравитацией и веществом в обычной римановой геометрии. На примере мы показываем, как антисимметричное калибровочное вещетво, связанное с гравитацией может быть описано таким образом, используя действие первого и второго порядков. Мы также обсуждаем, как может быть получена спонтанная компактификация теории Калуца-Клейна в семи измерениях, используя такой потенциал.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See,e.g.,M. J. Duff: inSuperspace and Supergravity, edited byS. W. Hawking andM. Roček (London, 1980), p. 381.

  2. Th. Kaluza:Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. Kl., 966 (1921);O. Klein:Z. Phys.,37, 895 (1926);E. Witten:Nucl. Phys. B,186, 412 (1981) (contains a comprehensive list of earlier work);M. J. Duff andD. J. Toms: CERN preprints TH 3248 and TH 3259;F. Englert: CERN preprint TH. 3394.

  3. P. Jordan:Schwerkraft und Weltall, second edition (Braunschweig, 1955);C. Brans andR. H. Dicke:Phys. Rev.,124, 925 (1961).

  4. E. R. Harrison:Phys. Rev. D,6, 2077 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  5. U. Lindröm:Nuovo Cimento B,32, 298 (1976);35, 130 (1976).

    Article  ADS  Google Scholar 

  6. See,e.g.,E. Cremmer andJ. Scherk:Nucl. Phys. B,118, 61 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. For a review of supergravity seeP. van Nieuwenhuizen:Phys. Rep.,68, 189 (1981);J. Gates, M. T. Grisaru, M. Rocek andW. Siegel:Superspace, (New York, N. Y. 1983).

    Article  MathSciNet  ADS  Google Scholar 

  8. P. G. O. Freund andM. A. Rubin:Phys. Lett. B,97, 233 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. E. Schrödinger:Space-Time Structure (London, 1950).

  10. B. E. Laurent:Ark. Fys.,16, 247 (1959).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindström, U., Grundberg, J. A torsion potential. Nuovo Cimento B 75, 171–184 (1983). https://doi.org/10.1007/BF02831171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02831171

PACS. 04.50

Navigation