Skip to main content
Log in

Thermal transformations in mechanically alloyed Fe-Zn-Si materials

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The ball milling of elemental powders corresponding to Γ (Fe3Zn10)+0.12 wt pct Si; Γ1 (Fe5Zn21) + 0.12 wt pct Si; δ (FeZn7)+0.12 wt pct Si; and ζ (FeZn13)+0.12 wt pct Si composition ratios yields crystalline, mechanically alloyed phases. Differential scanning calorimetry (DSC) measurements of these materials show that they evolve differently, with well-defined characteristic stages. The activation energies for processes corresponding to these stages, based on kinetic analyses, are determined and correlated to microstructural evolvements. The processes occurring during the first stage below 250 °C, for all of the materials studied using X-ray diffraction (XRD) analysis, are associated with release of strain, recovery, and limited atomic diffusion. The activation energies for recovery processes are 120 kJ/mole for the Γ+0.12 wt pct Si, 131 kJ/mole for δ+0.12 wt pct Si, and 96 kJ/mole for ζ+0.12 wt pct Si alloys. At higher temperatures, recrystallization and other structural transformations occur with activation energies of 130 and 278 kJ/mole for Γ+0.12 wt % Si; of 161 kJ/mole for Γ1+0.12 wt pct Si; of 167 and 244 kJ/mole for δ+0.12 wt pct Si; and of 641 kJ/mole for the ζ+0.12 wt pct Si. In addition, a eutectic reaction at 420 °C±3 °C, corresponding to the Zn-Si system, and a melting of Zn in Fe-Zn systems are observed for the ζ+0.12 wt pct Si material. The relation of FeSi formation in the Sandelin process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.C. Porter: in Corrosion Resistance of Zinc and Zinc Alloys, Philip A. Schwietzer, ed., Marcel Dekker, New York, NY, 1994, pp. 1–10.

    Google Scholar 

  2. H.H. Lee: Proc. 1st Asian-Pacific General Galvanizing Conf., Sept. 15, 1992, pp. 1–7.

  3. L.L. Shrier: Corrosion, 1976, vol. 2, p. 14:36.

    Google Scholar 

  4. R.F. Lynch: J. Met., 1987, Aug., pp. 39–41.

  5. U. Chakkingal and R.N. Wright: Proc. Advanced Coating Technology Conf., Chicago, IL, Nov. 1992, pp. 3–7.

  6. M. Gu and A.R. Marder: Plating Surface Finishing, 1991, Jan., pp. 77–79.

  7. O.W. Storey: Metall. Chem. Eng., 1916, vol. 14, pp. 683–91.

    CAS  Google Scholar 

  8. Z.W. Chen, N.F. Kennon, J.B. See, and M.A. Barter: JOM, 1992, Jan., pp. 22–26

  9. O. Kubaschewski: Iron-Binary Phase Diagrams, Springer-Verlag, New York, NY, 1982, p. 173.

    Google Scholar 

  10. R.W. Sandelin: Wire Wire Products, 1940, vol. 15, pp. 26–54.

    Google Scholar 

  11. M.S. Kozdras and P. Niessen: Metallography, 1989, vol. 22, pp. 253–67.

    Article  CAS  Google Scholar 

  12. H. Guttman and P. Niessen: Can. Metall. O., 1972, vol. 11, pp. 609–15.

    CAS  Google Scholar 

  13. J. Mackowiak and N.R. Short: Int. Met. Rev., 1979, vol. 24 (1), pp. 1–19.

    CAS  Google Scholar 

  14. P.R. Chidambaram, V. Rangarajan, and W.J. van Ooij: Surf. Coatings Technol., 1991, vol. 46, p. 245.

    Article  CAS  Google Scholar 

  15. D.R. Maurice and T.H. Courtney: Metall. Trans. A, 1990, vol. 21A, pp. 289–303.

    CAS  Google Scholar 

  16. Jung-Ho Ahn and Kang-Yull Lee: Mater. Trans., JIM, 1995, vol. 36, pp. 297–304.

    CAS  Google Scholar 

  17. P. Perrot and J.Y. Dauphin: CALPHAD, 1988, vol. 12 (1), pp. 33–40.

    Article  CAS  Google Scholar 

  18. T.H. Chuang, W. Gust, and B. Predel: Mater. Sci. Eng. A, 1989, vol. 112, p. 175.

    Article  Google Scholar 

  19. A Barhan-Tavakoli: Z. Metallkd., 1985, vol. 76, p. 37.

    Google Scholar 

  20. D.C. Cook and R.G. Grant: “Mossbauer Analysis of Fe-Zn Coatings,” Progress Report No. ZM-403, Int. Lead and Zinc Research Organization (ILZRO), Research Triangle Park, NC, 1993.

    Google Scholar 

  21. A.D. Jordan: Master’s Thesis, University of Cincinnati, Cincinnati, OH, 1996.

    Google Scholar 

  22. E.J. Mittemeijer, L. Cheng, P.J. van der Schaaf, C.M. Brakman, and B.M. Korevaar: Metall. Trans. A, 1988, vol. 19A, pp. 925–32.

    CAS  Google Scholar 

  23. O.N.C. Uwakweh and Z.T. Liu: J. Mater. Synthesis Processing, 1995, vol. 3 (5), pp. 319–29.

    CAS  Google Scholar 

  24. JCPDS Nos. 33–697, 32–478, 13–578, 34–1314, 4–831, 38–1397, and 27–1402, International Center for Diffraction Data, Publishers of the Powder Diffraction File, New Square, PA.

  25. V. Raghavan: Ind. Inst. Met., 1992, Part 6, pp. 1183–88.

  26. W. Köster: Metallurgia, 1969, vol. 80, pp. 219–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uwakweh, O., Jordan, A. & Maziasz, P. Thermal transformations in mechanically alloyed Fe-Zn-Si materials. Metall Mater Trans A 31, 2747–2754 (2000). https://doi.org/10.1007/BF02830334

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02830334

Keywords

Navigation