Skip to main content
Log in

An experimental investigation on the kinetics of solute driven remelting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study is aimed at understanding the interface kinetics during solute driven remelting in metallic alloys. Solid Al is placed in contact with a liquid Al-Mg alloy. As solid and liquid compositions at the interface are out of equilibrium, remelting takes place. The remelting rate is estimated as a function of time using a simple heat balance. The estimated velocity from the heat-balance calculations shows excellent agreement with the geometric velocity, directly measured from the remelted samples in each experiment. This confirms the accuracy and reliability of the heat-balance calculations and establishes this technique as a potential method for tracing the interface velocity during remelting. The results indicate that, at a constant temperature, an increase in liquid supersaturation leads to a linear increase in remelting velocity, as a result of an increasing driving force for remelting. At a constant liquid supersaturation, an increase in temperature results in an exponential increase in the remelting velocity, due to the enhanced mass transport at the higher temperatures. Semi-empirical relations are derived from these experimental observations and a combined analysis of the effects of driving force and kinetics yields a relation for remelting velocity as a function of temperature for a variety of boundary conditions. Remelting velocities predicted by this relation are in good agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hellawell, S. Liu, and S.Z. Lu: J. Met., 1997, vol. 49, pp. 18–20.

    CAS  Google Scholar 

  2. M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, and U.R. Kattner: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1517–31.

    Article  CAS  Google Scholar 

  3. E.E. Emley: Int. Metall. Rev., 1976, vol. 21, pp. 75–115.

    Google Scholar 

  4. D.P. Woodruff: Phil. Mag., 1968, vol. 17, pp. 283–94.

    Article  CAS  Google Scholar 

  5. J.D. Verhoeven and K.A. Heimes: J. Cryst. Growth, 1971, vol. 10, pp. 179–84.

    Article  CAS  Google Scholar 

  6. J.D. Verhoeven and E.D. Gibson: J. Cryst. Growth, 1971, vol. 11, pp. 29–38.

    Article  CAS  Google Scholar 

  7. J.D. Verhoeven and E.D. Gibson: J. Cryst. Growth, 1971, vol. 11, pp. 39–49.

    Article  CAS  Google Scholar 

  8. Q. Han and A. Hellawell: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 169–73.

    Article  CAS  Google Scholar 

  9. W.P. Allen, H.J. Fecht, and J.H. Perepezko: Scripta Metall., 1989, vol. 23, pp. 643–48.

    Article  CAS  Google Scholar 

  10. D. Basak, W.J. Boettinger, D. Josell, S.R. Coriell, J.L. McClure, S. Krishnan, and A. Cezairliyan: Acta Mater., 1999, vol. 47, pp. 3147–58.

    Article  CAS  Google Scholar 

  11. J. Daeges, H. Gleiter, and J.H. Perepezko: Phys. Lett., 1986, vol. A119, pp. 79–82.

    Google Scholar 

  12. X. Wan, Q. Han, and J.D. Hunt: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 751–55.

    Google Scholar 

  13. H. Hu and S.A. Argyropoulos: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 135–48.

    Article  CAS  Google Scholar 

  14. M. Rettenmayr, O. Warkentin, and H.E. Exner: Z. Metallkd., 1997, vol. 88, pp. 617–19.

    CAS  Google Scholar 

  15. M. Rettenmayr, O. Warkentin, M. Rappaz, and H.E. Exner: unpublished research.

  16. G. Petzow: in Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, G. Petzow and G. Effenberg, eds., VCH, Weinheim, 1992, vol. 5, pp. 244–45.

    Google Scholar 

  17. D.J. Hebditch and J.D. Hunt: Metall. Trans., 1974, vol. 5A, pp. 1557–64.

    Article  Google Scholar 

  18. M. Retternmayr, O. Warkentin and M. Rappaz: in Solidification and Gravity 2000, A. Roósz, M. Rettenmayr, and D. Watring, eds., Materials Science Forum, Trans Tech Publications, Uetikon, Switzerland, 2000, vols. 329–330, pp. 339–44.

    Google Scholar 

  19. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, VanNostrand Reinhold Int., London, 1981.

    Google Scholar 

  20. G.S. Cole: Solidification, ASM Seminar Series, ASM, Metals Park, OH, 1971, p. 201.

    Google Scholar 

  21. K. Kovakova and M. Sipocz: in DIMETA 2, Proc. Int. Conf. on Diffusion in Metals and Alloys, F.J. Kedves and D.L. Beke, eds., Trans Tech Publications, Aedermansdorf, Switzerland, 1982, p. 533.

    Google Scholar 

  22. H. Biloni and W.J. Boettinger: in Physical Metallurgy, 4th ed., R.W. Cahn and Peter Haasen, eds., North-Holland, Amsterdam, 1996, vol. 1, p. 704.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, B., Rettenmayr, M. An experimental investigation on the kinetics of solute driven remelting. Metall Mater Trans A 31, 2713–2720 (2000). https://doi.org/10.1007/BF02830330

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02830330

Keywords

Navigation