Skip to main content
Log in

Catalyzed precipitation in Al-Cu-Si

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The work reported here concerns the effect of Si on the precipitation of θ′ phase (metastable Al2Cu) during the isothermal aging of Al-2Cu-1 Si (wt pct). The binary alloys Al-2Cu and Al-1 Si were studied for comparison. Only two precipitate phases were detected: essentially pure Si in Al-1 Si and Al-2Cu-1 Si, and θ′ (metastable Al2Cu) in Al-2Cu and Al-2Cu-1Si. On aging the ternary alloy at 225 °C, Si precipitates first and catalyzes the θ′ phase. The precipitates in the ternary alloy are smaller, are more densely distributed, have lower aspect ratios, and coarsen more slowly than those in the binary Al-2Cu aged at the same temperature. While the shapes of individual θ′ precipitates in binary Al-2Cu are strongly affected by the kinetic problem of nucleating growth ledges, which produces a significant scatter in the aspect ratio for samples of given thickness, the overall evolution of particle shape with size follows the predictions of the Khachaturyan-Hairapetyan (KH) thermoelastic theory, which reduces to κ=L/d ∞ √L at large sizes. The KH theory provides an estimate for the interfacial tension of the broad Al-θ′ interface of 85 to 96 mJ/m2, which is near the values for other low-energy interfaces in Al, such as the twin boundary energy (100 mJ/m2) and the antiphase boundary energy in δ′ Al3Li (70 mJ/m2). Si and θ′ precipitates in Al-2Cu-1 Si have a strong elastic interaction because of their compensating strain fields. This elastic interaction promotes the nucleation of θ′ precipitates on Si, decreases the expected aspect ratio of θ′, and inhibits coarsening. Finally, Si precipitation in ternary Al-2Cu-1 Si differs from that in binary Al-1 Si in that the Si precipitates are coarser, more equiaxed, and more extensively twinned. These changes appear to be effects of Cu, which increases the solubility of Si in Al and adsorbs on the Si-Al interface, promoting twinning by a “step-poisoning” effect at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Morris, Jr., C.-U. Kim, and S.H. Kang: J. Met., 1996, vol. 48, pp. 43–46.

    CAS  Google Scholar 

  2. C.-U. Kim, S.I. Selitser, and J. W. Morris, Jr.: J. Appl. Phys., 1994, vol. 75, pp. 879–84.

    Article  CAS  Google Scholar 

  3. J.H. Han, M.C. Shin, S.J. Kang, and J.W. Morris, Jr.: Appl. Phys. Lett., 1998, vol. 73, pp. 762–64.

    Article  Google Scholar 

  4. E.G. Colgan and K.P. Rodbell: J. Appl. Phys., 1994, vol. 75, pp. 3423–34.

    Article  CAS  Google Scholar 

  5. S.H. Kang and J.W. Morris, Jr.: J. Kor. Phys. Soc, 1999, vol. 35, p. 412–18.

    Google Scholar 

  6. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Chapman and Hall, London, 1992, pp. 291–302.

    Google Scholar 

  7. M.J. Starink and P. Van Mourik: Metall. Trans. A, 1991, vol. 22A, pp. 665–74.

    CAS  Google Scholar 

  8. M.J. Starink and P. Van Mourik: J. Mater. Sci., 1994, vol. 29, pp. 2835–40.

    Article  CAS  Google Scholar 

  9. A.T. Steward and J.W. Martin: J. Inst. Met., 1970, vol. 96, pp. 62–63.

    Google Scholar 

  10. S.P. Ringer, K. Hono, I.J. Polmear, and T. Sakurai: Acta Metall., 1996, vol. 44, pp. 1883–98.

    CAS  Google Scholar 

  11. R.N. Wilson: J. Inst. Met., 1969, vol. 97, pp. 80–86.

    CAS  Google Scholar 

  12. V. Radmilovic, G. Thomas, G.J. Shiflet, and E.A. Starke: Scripta Metall., 1989, vol. 23 pp. 1141–46.

    Article  CAS  Google Scholar 

  13. S.K. Das, G. Thomas, and D. Rowcliffe: Proc. 7th Int. Conf. Electron Microscopy, Grenoble, France, Soc. Francaise de Microscopic, Paris, France, 1970, pp. 533–34.

    Google Scholar 

  14. S.P. Ringer, K. Hono, and T. Sakurai: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2207–18.

    Article  CAS  Google Scholar 

  15. I. Dutta, S.M. Allen, and J.L. Hafley: Metall. Trans., 1991, vol. 22A, pp. 2553–63.

    CAS  Google Scholar 

  16. T. Christman and S. Suresh: Acta Metall., 1988, vol. 36, pp. 1691–04.

    Article  CAS  Google Scholar 

  17. G.J. Mahan, J.M. Howe, and A.K. Vasudevan: Acta Metall. Mater., 1990, vol. 38, pp. 1503–12.

    Article  Google Scholar 

  18. G. Thomas and M.J. Whelan: Phil. Mag., 1959, vol. 4, pp. 511–27.

    Article  CAS  Google Scholar 

  19. A.G. Khachaturyan: Theory of Structural Transformations in Solids, John Wiley and Sons, New York, NY, 1983, ch. 8.

    Google Scholar 

  20. R.D. Doherty: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., North-Holland, Amsterdam, 1996, pp. 1405–21.

    Google Scholar 

  21. J.D. Boyd and R.B. Nicholson: Acta Metall., 1971, vol. 19, pp. 1101–09 and 1379–91.

    Article  CAS  Google Scholar 

  22. R. Sankaran and C. Laird: Acta Metall., 1974, vol. 22, pp. 957–69.

    Article  CAS  Google Scholar 

  23. R. Sankaran and C. Laird: Scripta Metall., 1977, vol. 11, pp. 383–86.

    Article  CAS  Google Scholar 

  24. G.J. Shiflet, H.I. Aaronson, and T. Courtney: Scripta Metall., 1977, vol. 11, pp. 677–80.

    Article  CAS  Google Scholar 

  25. P. Merle and F. Fouquet: Acta Metall., 1981, vol. 29, pp. 1919–27.

    Article  CAS  Google Scholar 

  26. P. Merle and J. Merlin: Acta Metall., 1981, vol. 29, pp. 1929–38.

    Article  CAS  Google Scholar 

  27. P. Merle and R.D. Doherty: Scripta Metall., 1982, vol. 16, pp. 357–60.

    Article  CAS  Google Scholar 

  28. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing Company, Inc., New York, NY, 1978, pp. 506–07.

    Google Scholar 

  29. J.M. Silcock, T.J. Heal, and H.K. Hardy: J. Inst. Met., 1953–54, vol. 82, pp. 1519–2148.

    Google Scholar 

  30. A. Saulinier: Mem. Sci. Rev. Metall., 1961, vol. 58, pp. 615–25.

    Google Scholar 

  31. H.S. Rosenbaum and D. Turnbull: Acta Metall., 1958, vol. 6, pp. 654–59.

    Google Scholar 

  32. H.S. Rosenbaum and D. Turnbull: Acta Metall., 1959, vol. 7, pp. 664–74.

    Article  CAS  Google Scholar 

  33. H.S. Rosenbaum and D. Turnbull: Acta Metall., 1959, vol. 7, pp. 678–79.

    Article  Google Scholar 

  34. S. Hinderberger, S.-Q. Xiao, K.H. Westmacott, and U. Dahmen: Z. Metallkd., 1996, vol. 87, pp. 161–70.

    CAS  Google Scholar 

  35. J. Douin, U. Dahmen, and K.H. Westmacott: Phil. Mag. B, 1991, vol. 63, pp. 867–90.

    Article  CAS  Google Scholar 

  36. S.Q. Xiao, S. Hindenberger, K.H. Westmacott, and U. Dahmen: Phil. Mag. B, 1996, vol. 73, pp. 1261–78.

    Article  CAS  Google Scholar 

  37. G.R. Hugo and B.C. Muddle: Acta Metall. Mater., 1990, vol. 38, pp. 351–63.

    Article  CAS  Google Scholar 

  38. P. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Whelan: Electron Microscopy of Thin Crystals, Robert E. Krieger Publishing Co., Malabar, Florida, 1977, pp. 317–27 and 415–22.

    Google Scholar 

  39. A.G. Khachaturyan and V.G. Hairapetyan: Phys. Status Solidi B, 1973, vol. 57, pp. 801–07.

    Article  Google Scholar 

  40. J.W. Morris, Jr., A.G. Khachaturyan, and S.H. Wen: Proc. NATO Advanced Study Institute in Modulated Structure Materials, T. Tsakalakos, ed., Martinus Nijhoff, Dordrecht, Holland, 1984, pp. 32–46.

    Google Scholar 

  41. Landolt-Bornstein LBIII/29a—Low Frequency Properties of Dielectric Crystals: Second and Higher-Order Elastic Constants, D.F. Nelson, ed., Springer-Verlag, Berlin, 1992.

    Google Scholar 

  42. H.B. Huntington: Solid State Phys., 1958, vol. 7, p. 213.

    Article  CAS  Google Scholar 

  43. H.I. Aaronson, J.B. Clark, and C. Laird: Met. Sci. J., 1968, vol. 2, p. 155 (cited by Sankaran and Laird[23]).

    Article  CAS  Google Scholar 

  44. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Krieger Publishing, Malabar, FL, 1982, Appendix 2

    Google Scholar 

  45. A.G. Khachaturyan and J.W. Morris, Jr.: Phil. Mag., 1987, vol. 56, pp. 517–32.

    Article  Google Scholar 

  46. T.B. Massalski: in Binary Alloy Phase Diagrams, J.L. Murray, L.H. Bennett, and H. Baker, eds., ASM, Metals Park, OH, 1986, pp. 106–07 and 164–65.

    Google Scholar 

  47. Handbook of Ternary Alloy Phase Diagrams, P. Villars, A. Prince, and H. Okamoto, eds., ASM, Metals Park, OH, 1995, vol. 3. pp. 3331–50.

    Google Scholar 

  48. N. Cabrera and D.A. Vermilyea: Growth and Perfection of Crystals, Wiley, New York, NY, 1958, p. 394.

    Google Scholar 

  49. S.-Z. Lu and A. Hellawell: Metall. Trans. A, 1987, vol. 18A, pp. 1721–33.

    CAS  Google Scholar 

  50. Mark McCormack, A.G. Khachaturyan, and J.W. Morris, Jr.: Acta Metall. Mater., 1992, vol. 40, pp. 325–31.

    Article  CAS  Google Scholar 

  51. K. Thornton, N. Akaiwa, and P.W. Voorhees: in Phase Transformations and Evolution in Materials, P.E.A. Turchi and A. Gonis, eds., TMS, Warrendale, PA, 2000, pp. 73–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitlin, D., Morris, J.W. & Radmilovic, V. Catalyzed precipitation in Al-Cu-Si. Metall Mater Trans A 31, 2697–2711 (2000). https://doi.org/10.1007/BF02830329

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02830329

Keywords

Navigation